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Combining molecular-simulation techniques with experiment accelerates 
fundamental as well as applied research, as molecular simulations 

(a) provide mechanistic insights that complement experiment, and
(b) serve as an inexpensive route to scan the role of multiple physical 
parameters and environmental variables.

Computational techniques have become an integral part of biological 
research and discovery: 

(a) Predicting bio-molecular (protein/RNA/lipid) structure
(b) Refining X-ray, NMR and neutron diffraction data
(c) Post-processing structural information 
         - Interpret and analyze experimental data in terms of interactions at the 
           atomic level
         - Understand fast time scale dynamics, such as during enzyme    
           catalysis
(d) Structure-based drug design
 

Role of molecular simulations
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Access timescales: integrate classical equations of motion

Molecular Dynamics: Integrate Newtonʼs/Hamiltonʼs equation of motion

Langevin Dynamics: The ʼunimportantʼ degrees of freedom are averaged-
out in such a way that the thermodynamic and long time-scale properties are 
preserved.The reduction of degrees of freedom depends on the problem one 
wishes to solve. The interactions change into potentials of mean force, and 
the omitted degrees of freedom are replaced by noise and friction. 

Brownian Dynamics: Langevin dynamics at high friction.

Monte Carlo: are a class of computational algorithms that rely on repeated 
random sampling to compute their results

Energy Minimization: No time step. Move atoms so as to reduce the net 
forces (the gradients of potential energy) on the atoms until they become 
negligible.
 

2 Chapter 1. Introduction

(either equilibrium or non-equilibrium) of molecular systems. For molecular modeling, this has
two important consequences:

• The knowledge of a single structure, even if it is the structure of the global energy min-
imum, is not sufficient. It is necessary to generate a representative ensemble at a given
temperature, in order to compute macroscopic properties. But this is not enough to compute
thermodynamic equilibrium properties that are based on free energies, such as phase equi-
libria, binding constants, solubilities, relative stability of molecular conformations, etc. The
computation of free energies and thermodynamic potentials requires special extensions of
molecular simulation techniques.

• While molecular simulations, in principle, provide atomic details of the structures and mo-
tions, such details are often not relevant for the macroscopic properties of interest. This
opens the way to simplify the description of interactions and average over irrelevant details.
The science of statistical mechanics provides the theoretical framework for such simpli-
fications. There is a hierarchy of methods ranging from considering groups of atoms as
one unit, describing motion in a reduced number of collective coordinates, averaging over
solvent molecules with potentials of mean force combined with stochastic dynamics [6],
to mesoscopic dynamics describing densities rather than atoms and fluxes as response to
thermodynamic gradients rather than velocities or accelerations as response to forces [7].

For the generation of a representative equilibrium ensemble two methods are available: (a) Monte
Carlo simulations and (b) Molecular Dynamics simulations. For the generation of non-equilibrium
ensembles and for the analysis of dynamic events, only the second method is appropriate. While
Monte Carlo simulations are more simple than MD (they do not require the computation of forces),
they do not yield significantly better statistics than MD in a given amount of computer time. There-
fore, MD is the more universal technique. If a starting configuration is very far from equilibrium,
the forces may be excessively large and the MD simulation may fail. In those cases, a robust en-
ergy minimization is required. Another reason to perform an energy minimization is the removal
of all kinetic energy from the system: if several “snapshots” from dynamic simulations must be
compared, energy minimization reduces the thermal noise in the structures and potential energies
so that they can be compared better.

1.2 Molecular Dynamics Simulations

MD simulations solve Newton’s equations of motion for a system of N interacting atoms:

mi
∂2ri

∂t2
= F i, i = 1 . . . N. (1.1)

The forces are the negative derivatives of a potential function V (r1, r2, . . . , rN ):

F i = −∂V

∂ri
(1.2)

The equations are solved simultaneously in small time steps. The system is followed for some
time, taking care that the temperature and pressure remain at the required values, and the coor-
dinates are written to an output file at regular intervals. The coordinates as a function of time
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REDUCED SYSTEM DYNAMICS

Separate relevant d.o.f. r�

and irrelevant d.o.f. r��

Force on r�:
part correlated with positions r�

part correlated with velocities ṙ�

rest is ’noise’, not correlated with positions or velocities of primed par-
ticles.

F i(t) = −∂V mf

∂r�
i

+ F friction
i + F i(t)

noise

F friction
i (t) is a function of vj(t − τ ).

F i(t)noise = Ri(t) with
�Ri(t)� = 0

�vj(t)Ri(t + τ )� = 0 (τ > 0)

R(t) is characterized by stochastic properties :
• probability distribution w(Ri) dRi

• correlation function �Ri(t)Rj(t + τ )�
Projection operator technique (Kubo and Mori; Zwanzig) give ele-
gant framework to describe relation between friction and noise

[Van Kampen in Stochastic Processes in Physics and Chemistry (1981): “This
equation is exact but misses the point. The distribution cannot be determined
without solving the original equation...”)]

http://en.wikipedia.org/wiki/Computation
http://en.wikipedia.org/wiki/Computation
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Random
http://en.wikipedia.org/wiki/Random
http://en.wikipedia.org/wiki/Gradients
http://en.wikipedia.org/wiki/Gradients
http://en.wikipedia.org/wiki/Potential_energy
http://en.wikipedia.org/wiki/Potential_energy
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Comparing molecular simulations against experiment
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Define the potential energy V in atomistic simulations

Chapter 4

Interaction function and force
field

To accommodate the potential functions used in some popular force fields (see 4.10), GROMACS

offers a choice of functions, both for non-bonded interaction and for dihedral interactions. They

are described in the appropriate subsections.

The potential functions can be subdivided into three parts

1. Non-bonded: Lennard-Jones or Buckingham, and Coulomb or modified Coulomb. The non-

bonded interactions are computed on the basis of a neighbor list (a list of non-bonded atoms

within a certain radius), in which exclusions are already removed.

2. Bonded: covalent bond-stretching, angle-bending, improper dihedrals, and proper dihedrals.

These are computed on the basis of fixed lists.

3. Restraints: position restraints, angle restraints, distance restraints, orientation restraints and

dihedral restraints, all based on fixed lists.

4.1 Non-bonded interactions

Non-bonded interactions in GROMACS are pair-additive and centro-symmetric:

V (r1, . . . rN ) =
�

i<j

Vij(rij); (4.1)

F i = −
�

j

dVij(rij)
drij

rij

rij
= −F j (4.2)

The non-bonded interactions contain a repulsion term, a dispersion term, and a Coulomb term.

The repulsion and dispersion term are combined in either the Lennard-Jones (or 6-12 interaction),

or the Buckingham (or exp-6 potential). In addition, (partially) charged atoms act through the

Coulomb term.

Pairwise additive assumption
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Figure 4.1: The Lennard-Jones interaction.

4.1.1 The Lennard-Jones interaction

The Lennard-Jones potential VLJ between two atoms equals:

VLJ(rij) =
C(12)

ij

r12
ij

−
C(6)

ij

r6
ij

(4.3)

See also Fig. 4.1 The parameters C(12)
ij and C(6)

ij depend on pairs of atom types; consequently they

are taken from a matrix of LJ-parameters.

The force derived from this potential is:

F i(rij) =



12
C(12)

ij

r13
ij

− 6
C(6)

ij

r7
ij



 rij

rij
(4.4)

The LJ potential may also be written in the following form:

VLJ(rij) = 4�ij




�

σij

rij

�12

−
�

σij

rij

�6


 (4.5)

In constructing the parameter matrix for the non-bonded LJ-parameters, two types of combination

rules can be used within GROMACS, only geometric averages (type 1 in the input section of the

force field file):

C(6)
ij =

�
C(6)

ii C(6)
jj

�1/2

C(12)
ij =

�
C(12)

ii C(12)
jj

�1/2 (4.6)

or, alternatively the Lorentz-Berthelot rules can be used. An arithmetic average is used to calculate

σij , while a geometric average is used to calculate �ij (type 2):

σij = 1
2(σii + σjj)

�ij = (�ii �jj)1/2 (4.7)

Non-bonded interactions: Eg. Lennard-Jones interaction
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Figure 4.2: The Buckingham interaction.

finally an geometric average for both parameters can be used (type 3):

σij = (σii σjj)1/2

�ij = (�ii �jj)1/2 (4.8)

This last rule is used by the OPLS force field.

4.1.2 Buckingham potential

The Buckingham potential has a more flexible and realistic repulsion term than the Lennard-Jones

interaction, but is also more expensive to compute. The potential form is:

Vbh(rij) = Aij exp(−Bijrij)−
Cij

r6
ij

(4.9)

See also Fig. 4.2. The force derived from this is:

F i(rij) =
�

AijBij exp(−Bijrij)− 6
Cij

r7
ij

�
rij

rij
(4.10)

There is only one set of combination rules for Buckingham potentials:

Aij = (Aii Ajj)1/2

Bij = 1
2(Bii + Bjj)

Cij = (Cii Cjj)1/2
(4.11)

4.1.3 Coulomb interaction

The Coulomb interaction between two charge particles is given by:

Vc(rij) = f
qiqj

εrrij
(4.12)

Coulomb interaction
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The Buckingham potential has a more flexible and realistic repulsion term than the Lennard-Jones

interaction, but is also more expensive to compute. The potential form is:

Vbh(rij) = Aij exp(−Bijrij)−
Cij

r6
ij

(4.9)

See also Fig. 4.2. The force derived from this is:

F i(rij) =
�

AijBij exp(−Bijrij)− 6
Cij

r7
ij

�
rij

rij
(4.10)

There is only one set of combination rules for Buckingham potentials:

Aij = (Aii Ajj)1/2

Bij = 1
2(Bii + Bjj)

Cij = (Cii Cjj)1/2
(4.11)

4.1.3 Coulomb interaction

The Coulomb interaction between two charge particles is given by:

Vc(rij) = f
qiqj

εrrij
(4.12)
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Figure 4.5: Principle of bond stretching (left), and the bond stretching potential (right).

4.2 Bonded interactions

Bonded interactions are based on a fixed list of atoms. They are not exclusively pair interac-

tions, but include 3- and 4-body interactions as well. There are bond stretching (2-body), bond
angle (3-body), and dihedral angle (4-body) interactions. A special type of dihedral interaction

(called improper dihedral) is used to force atoms to remain in a plane or to prevent transition to a

configuration of opposite chirality (a mirror image).

4.2.1 Bond stretching

Harmonic potential

The bond stretching between two covalently bonded atoms i and j is represented by a harmonic

potential:

Vb (rij) =
1
2
kb

ij(rij − bij)2 (4.35)

See also Fig. 4.5, with the force given by:

F i(rij) = kb
ij(rij − bij)

rij

rij
(4.36)

Fourth power potential

In the GROMOS-96 force field [70], the covalent bond potential is, for reasons of computational

efficiency, written as:

Vb (rij) =
1
4
kb

ij

�
r2
ij − b2

ij

�2
(4.37)

The corresponding force is:

F i(rij) = kb
ij(r

2
ij − b2

ij) rij (4.38)

Bond stretching: Eg. Harmonic potential 



Define the potential energy V in atomistic simulations
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Figure 4.9: Improper dihedral potential.

atom of the dihedral quadruple. With the periodic GROMOS potential a special 1-4 LJ-interaction

must be included; with the Ryckaert-Bellemans potential for alkanes the 1-4 interactions must be

excluded from the non-bonded list. Note: Ryckaert-Bellemans potentials are also used in e.g. the

OPLS force field in combination with 1-4 interactions. You should therefore not modify topologies

generated by pdb2gmx in this case.

Proper dihedrals: periodic type

Proper dihedral angles are defined according to the IUPAC/IUB convention, where φ is the angle

between the ijk and the jkl planes, with zero corresponding to the cis configuration (i and l on

the same side). There are two dihedral function types in GROMACS topology files. There is the

standard type 1 which behaves like any other bonded interactions. For certain force fields, type 9 is

useful. Type 9 allows multiple potential functions to be applied automatically to a single dihedral

in the [ dihedral ] section when multiple parameters are defined for the same atomtypes in

the [ dihedraltypes ] section.

Vd(φijkl) = kφ(1 + cos(nφ− φs)) (4.62)

Proper dihedrals: Ryckaert-Bellemans function

For alkanes, the following proper dihedral potential is often used (see Fig. 4.11):

Vrb(φijkl) =
5�

n=0

Cn(cos(ψ))n, (4.63)

where ψ = φ− 180◦.

Note: A conversion from one convention to another can be achieved by multiplying every coeffi-

cient Cn by (−1)n
.

An example of constants for C is given in Table 4.1.

Dihedral potential: Eg. Ryckaert-Bellemans function
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Figure 4.10: Principle of proper dihedral angle (left, in trans form) and the dihedral angle potential
(right).

C0 9.28 C2 -13.12 C4 26.24
C1 12.16 C3 -3.06 C5 -31.5

Table 4.1: Constants for Ryckaert-Bellemans potential (kJ mol−1).
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Figure 4.11: Ryckaert-Bellemans dihedral potential.
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Figure 4.11: Ryckaert-Bellemans dihedral potential.

...and a whole bunch of restraints can be added to address a given problem.

4.4. Polarization 87

separate boxes; supply topol0.tpr, topol1.tpr, ... with different coordinates and/or

velocities.

orire_fc: force constant k for orientation restraints. The unit of k is kJ mol
−1

. Note that

the force constant for a restraint is this force constant times the weight of the restraint. When

set to zero one obtain the calculated orientation without affecting the simulation.

orire_tau: time constant τ for restraints. Set orire_tau = 10 for a time constant of 10

ps. Time averaging can be turned off by setting orire_tau to 0.

orire_fitgrp: the fit group for the restraints. This group of atoms is used to determine the

rotation R of the system with respect to the reference orientation. The reference orientation

is the starting conformation of the first subsystem. For a protein backbone should be a

reasonable choice.

nstorireout: orientation output frequency. Determines how often the orientations for all

restraints and the order tensor(s) S are written to the energy file. When using time and/or

ensemble averaging, the time and ensemble averaged orientations as well as the instan-

taneous non-ensemble averaged orientations are written to the energy file. These can be

analyzed using g_energy.

4.4 Polarization

Polarization can be treated by GROMACS by attaching shell (drude) particles to atoms and/or

virtual sites. The energy of the shell particle is then minimized at each time step in order to remain

on the Born-Oppenheimer surface.

4.4.1 Simple polarization

This is merely a harmonic potential with equilibrium distance 0.

4.4.2 Water polarization

A special potential for water that allows anisotropic polarization of a single shell particle [40].

4.4.3 Thole polarization

Based on early work by Thole [81], Roux and coworkers have implemented potentials for molecules

like ethanol [82, 83, 84]. Within such molecules, there are intramolecular interactions between

shell particles, however these must be screened because full Coulomb would be too strong. The

potential between two shell particles i and j is:

Vthole =
qiqj

rij

�
1−

�
1 +

r̄ij

2

�
exp−r̄ij

�
(4.103)

Polarization effects: Eg. Thole formulation
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Figure 4.7: Principle of angle vibration (left) and the bond angle potential (right).

4.2.5 Harmonic angle potential

The bond-angle vibration between a triplet of atoms i - j - k is also represented by a harmonic

potential on the angle θijk

Va(θijk) =
1
2
kθ

ijk(θijk − θ0
ijk)

2
(4.50)

As the bond-angle vibration is represented by a harmonic potential, the form is the same as the

bond stretching (Fig. 4.5).

The force equations are given by the chain rule:

F i = −dVa(θijk)
dri

F k = −dVa(θijk)
drk

F j = −F i − F k

where θijk = arccos
(rij · rkj)

rijrkj
(4.51)

The numbering i, j, k is in sequence of covalently bonded atoms. Atom j is in the middle; atoms

i and k are at the ends (see Fig. 4.7). Note that in the input in topology files, angles are given in

degrees and force constants in kJ/mol/rad
2
.

4.2.6 Cosine based angle potential

In the GROMOS-96 force field a simplified function is used to represent angle vibrations:

Va(θijk) =
1
2
kθ

ijk

�
cos(θijk)− cos(θ0

ijk)
�2

(4.52)

where

cos(θijk) =
rij · rkj

rijrkj
(4.53)

The corresponding force can be derived by partial differentiation with respect to the atomic posi-

tions. The force constants in this function are related to the force constants in the harmonic form

Angle stretching: Eg. Harmonic potential 
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4.2.5 Harmonic angle potential
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�
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Protein folding landscape

       

P1: NBL/ary/dat P2: N/MBL/plb QC: MBL/agr T1: MBL

July 31, 1997 9:34 Annual Reviews AR040-19

THEORY OF PROTEIN FOLDING 553

Figure 4 A viable protein folding landscape. The rugged folding landscape of a small helical
protein is funnel-like, with a preferred direction of flow toward a unique native state (23, 60). The
ensemble of conformations in the upper part of the funnel can be described by modified theories of
a RHP (shown in Figure 3) that take into account the formation of secondary structure. The order
parameters E, the solvent-averaged energy, and Q, the fraction of native-like contacts, describe the
position of an ensemble of states within the funnel and stratify the landscape. The fluctuations�E
and the stability gap δEs between the compact misfolded or molten globule states and the native
state are functions of these order parameters and can be estimated using theory and experiment.
This figure is drawn after that in Onuchic et al (23) and also indicated are the contributions of local
signals and tertiary contacts as well as hydrogen bonding to the stability gap, which provides the
specificity of folding according to the estimates by Saven & Wolynes (74).
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Critical Assessment of protein Structure Prediction (CASP)
http://www.predictioncenter.org 

This protein folding challenge aims at establishing the current state of the art in 
protein structure prediction, identifying what progress has been made, and 
highlighting where future effort may be most productively focused.

CASP 9, 2010 results: 2 representative examples
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High-resolution structure prediction and
the crystallographic phase problem
Bin Qian1*, Srivatsan Raman1*, Rhiju Das1*, Philip Bradley1, Airlie J. McCoy2, Randy J. Read2 & David Baker1

The energy-based refinement of low-resolution protein structure models to atomic-level accuracy is a major challenge for
computational structural biology. Here we describe a new approach to refining protein structure models that focuses
sampling in regions most likely to contain errors while allowing the whole structure to relax in a physically realistic all-atom
force field. In applications to models produced using nuclear magnetic resonance data and to comparative models based on
distant structural homologues, the method can significantly improve the accuracy of the structures in terms of both the
backbone conformations and the placement of core side chains. Furthermore, the resulting models satisfy a particularly
stringent test: they provide significantly better solutions to the X-ray crystallographic phase problem in molecular
replacement trials. Finally, we show that all-atom refinement can produce de novo protein structure predictions that reach
the high accuracy required for molecular replacement without any experimental phase information and in the absence of
templates suitable for molecular replacement from the Protein Data Bank. These results suggest that the combination of
high-resolution structure prediction with state-of-the-art phasing tools may be unexpectedly powerful in phasing
crystallographic data for which molecular replacement is hindered by the absence of sufficiently accurate previous models.

High-resolution prediction of protein structures from their amino
acid sequences and the refinement of low-resolution protein struc-
ture models to produce more accurate structures are long-standing
challenges in computational structural biology1. The refinement
problem has become particularly important in recent years, as the
continued increase in the number of experimentally determined pro-
tein structures, together with the explosion of genome sequence
information, has made it possible to produce comparative models
of a large number of protein structures with wide utility2. Ideally,
these models would consistently approach the resolution offered by
X-ray crystallography, enabling precise drug design and a deeper
understanding of catalysis and binding. Accurate high-resolution
models can, in principle, be achieved by searching for the lowest
energy structure given the sequence of the protein. However, despite
progress3, the large number of degrees of freedom in a protein chain
and the ruggedness of the energy landscape produced by strong
atomic repulsion at short distances greatly complicate this search
for sequences lacking close homologues of known structure.

An important application for predicted structures is to help solve
the X-ray crystallographic phase problem4,5. Converting X-ray dif-
fraction data into electron density maps of proteins requires the
inference of phases associated with each diffraction peak. Although
phase estimates can be obtained through the preparation of heavy
atom derivatives, the problem can be solved without additional
experimental information by the technique of molecular replace-
ment4,5 given a structure model that has high structural similarity
(better than 1.5 Å root-mean-squared (r.m.s.) deviation) to the crys-
tallized protein over a large fraction of themolecule. As an example of
the stringency of this condition, models of protein structures derived
from nuclear magnetic resonance (NMR) data typically do not give
good molecular replacement models for crystallographic data on the
same proteins6. Perhaps the most successful approach to molecular
replacement is the use of previous crystal structures of highly

sequence-similar (.40%) templates as search models. In cases of
lower sequence similarity, structure prediction tools can frequently
help build comparative models that give better molecular replace-
ment solutions; however, the success rate drops rapidly as the tem-
plate sequence identity falls below 30%4,5. In cases where structurally
similar experimental models are not available, ab initio phasing tech-
niques have had some success for targets with simple folds of high
symmetry7,8 or with new structures that have been rationally designed
from first principles9, but ab initio phasing of diffraction data for
natural globular proteins remains an unsolved problem.

In this study, we present a new energy-based rebuilding-and-
refinement method that consistently improves models derived from
NMR, from sequence-distant templates, and from de novo folding
methods. The final models include high-resolution features not pre-
sent in the starting models, including the packing of core side chains.
Bringing together these results from all-atom structure prediction
with state-of-the-art algorithms for molecular replacement and
automated rebuilding10–12, we show that distant-template-based
and de novo models can reach the accuracy required to solve the
X-ray crystallographic phase problem.

Targeted rebuilding-and-refinement protocol

We have developed a new approach for refining protein models that
combines the targeting of aggressive sampling to regions most likely
to be in error with powerful global optimization techniques. The new
protocol is outlined in Fig. 1a. The first step of this protocol is the
energy-based optimization of an input ensemble of models using
the previously described Rosetta all-atom refinement method. This
method combines Monte Carlo minimization with side-chain remo-
delling to relieve inter-atomic clashes and to optimize side-chain
packing and hydrogen bonding, as encoded by an all-atom force
field13,14. Briefly, in each Monte Carlo move, a random perturbation
to the protein backbone torsion angles is followed by discrete
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optimization of the side-chain conformations14,15, which allows effi-
cient crossing of side-chain torsional barriers. Then, quasi-Newton
optimization of the side-chain and backbone torsion angles is carried
out before the decision onwhether to accept themove. Because of the
final minimization, each point on the landscape is mapped to the
closest localminimum, flattening energy barriers16. Althoughmaking
it possible to recognize near-native predictions based on their low
energies1,13, this all-atom refinement alone does not consistently
produce significant improvements in model quality (Supplemen-
tary Fig. 1).

The second step in the new protocol is the identification of regions
of variation in the ensemble of refined models. We have found a
marked correlation between the extent of variation in the coordinates
of a residue in the refined structures and the deviation of the coordi-
nates of the residue in the refined models from the native structure.
An example is shown in Fig. 1b, c: positions exhibiting small variance
across the models are usually quite close to the correct structure,
whereas positions for which the variance is large often deviate con-
siderably from the native structure. This correlation arises from the
relatively short range of the force field and the energy gap between the
native structure and the models: because the energy of the entire
system is roughly equal to the sum of its parts, for most portions
of the protein, the correct conformation will be lower in energy than
non-native conformations. Regions of the protein that can access the
native conformation are likely to converge on this conformation and
thus exhibit less variation, whereas locally incorrect conformations
are likely to be spread throughout the landscape and exhibit more
variation. We observe this correlation for many different proteins in
both the cartesian coordinates and the internal torsion angles; a
related principle has recently been used in the Pcons method for
assessing protein models17.

The third step in the new protocol targets aggressive sampling to
the regions most likely to be in error. A fragment-based segment
rebuilding method (see Supplementary Material) is used to rebuild
completely regions of models with relatively high variation in the
model population. Because the precise regions that are incorrect
cannot be identified unambiguously, we carry outmany independent

calculations in which different segments in the higher variation
regions are randomly selected for complete rebuilding. The partially
rebuilt models are then subjected to the Rosetta all-atom refinement
protocol described above13,14. In the segment rebuilding process, side
chains are initially represented as soft interaction centres and the
connectivity of the chain is temporarily broken, thus permitting
the traversal of much larger barriers than those crossed by all-atom
refinement alone.

As indicated in Fig. 1a, if the lowest energy refined structures have
not converged, the rebuilding-and-refinement protocol is applied
iteratively using a selection process inspired by natural evolution to
guide convergence on the global minimum. At each iteration, a sub-
set of models that are low in energy yet structurally diverse is chosen
to seed the next round; the regions to be rebuilt are determined on the
basis of the backbone variation in the selected population. Bringing
together ideas from tabu search18 and conformational space anneal-
ing19, the selection process alternates between the propagation of a
structurally diverse population into the next round (diversification)
and focusing in on the lowest energy regions of the energy landscape
explored thus far (intensification). The lowest energy models after
ten iterations are selected as the final predictions. As illustrated in
Fig. 1d, models with progressively lower energies and more native-
like structures can be obtained with increasing number of iterations;
results on a number of refinement problems are summarized in
Supplementary Fig. 2.

Improving NMR models

As a first test of the new rebuilding-and-refinement method, we
sought to improve the accuracy of protein structure models derived
from moderate-resolution NMR experiments. NMR is an important
method for determining structures of proteins at atomic resolution
that has the advantage of not requiring crystals. In some cases, how-
ever, NMR models can contain errors due to either insufficient data
or ambiguities in interpretation of the input NMR spectra20. We
applied the method outlined in Fig. 1a to ten ensembles of NMR
models deposited in the Protein Data Bank (PDB) for which inde-
pendently determined high-resolution X-ray crystal structures
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Figure 1 | Overviewof the rebuilding-and-refinementmethod. a, Schematic
diagram of the rebuilding-and-refinement method applied to structures
from NMR, from comparative modelling (CM) and from de novo (DN)
modelling approaches. b, Strong correlation between the per-residue
backbone conformation variation in the model ensemble and the deviation
from the native structure for target T0199 from the sixth critical assessment
of structure prediction (CASP6). c, Superposition of the native structure of
CASP6 target T0199 with 50 low-energy all-atom refinedmodels. The native
structure backbone is shown as a thick line, and the models are shown as

thinner lines. Residues in the native structure are coloured by the average
per-residue Ca r.m.s. deviation to the native from 4.5 Å (red) to 0.5 Å (blue).
d, Iterative rebuilding and refinement yields low-energy native-like models.
The energy and the Ca r.m.s. deviation of models generated during three
iterations of the loop-relax protocol are displayed for iteration 1 (green),
iteration 4 (red) and iteration 7 (black). The Rosetta all-atom energy
includes the enthalpy plus the solvation contribution to the entropy but not
the configurational entropy.
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This is a particularly notable result because improving on the best
template structure has been a long standing challenge for comparative
modelling—owing to the high dimensionality of conformational
space, there are many more ways to degrade a reasonably accurate
model than to improve it. Superpositions of the closest homologous
structure, the submitted refined models and the native structure for
cases with the greatest improvement are shown in Fig. 2e–h. The
improvement in the refined structures is evident even in core second-
ary structural elements.

Out of the seven high-resolution predictions, there were four tar-
gets for which diffraction data were available and the modelled
sequence constituted the entire crystallized construct, enabling tests
of molecular replacement. In each of these cases, we found that the
best previous templates in the PDB failed to produce clear-cut
molecular replacement solutions (Phaser Z-scores greater than 7),
even after using knowledge of structurally alignable regions and
a side-chain truncation approach to trim back the search models
to their most accurate atoms4. Other template-based models sub-
mitted to CASP7, based on methods that typically did not use
aggressive all-atom refinement, gave similarly lowmolecular replace-
ment scores (Table 1). For three of the four cases, however, the
refined models that we submitted for CASP7 gave significantly better
molecular replacement solutions than the best template (Table 1).
For these targets, the maps produced by combining phases from
the blindly predicted model with the experimental diffraction ampli-
tudes were of sufficient quality to permit the automatic chain-tracing
program RESOLVE12 to build a large fraction of each structure
with high accuracy (Table 1). An example of the marked improve-
ment in electron density on using the refined models is shown in
Fig. 3c, d.

Ab initio phasing by ab initio modelling

To the best of our knowledge, a de novo structure prediction for a
natural protein with an asymmetric, globular fold has never been
used successfully for molecular replacement. However, the accuracy

of de novo prediction methods has been improving rapidly. In par-
ticular, the use of all-atom refinement to follow low-resolution
modelling by the Rosetta de novo modelling method13 led to several
blind predictions in CASP7 for proteins of all-a, all-b and a1b
secondary structure classes that placed most of the backbone ele-
ments and core side chains with high accuracy (see Fig. 4a–c)25.
This progress in de novo modelling, along with the successes above
with refined NMR and template-based models, encouraged us to
attempt molecular replacement with an exceptional prediction for
the 112-residue a-helical CASP7 target T0283.

The best of five models for T0283 blindly predicted without the use
of templates matched the subsequently released crystal structure
(2hh626) with a Ca r.m.s. deviation of 1.4 Å over 90 residues (Fig. 4c).
The closest previously known fold in the PDB, identified from struc-
ture superpositions by CASP7 assessors (2b2j27), was significantly dif-
ferent from the T0283 crystal structure, aligning 70 residues with a Ca
r.m.s. deviation of 3.1 Å (note also the poorGDT-HA score inTable 1).

After truncating the Rosetta prediction to a consensus core (resi-
dues 10 to 88, for which four of the five submitted models coincided
to within 2.5 Å Ca r.m.s. deviation), molecular replacement by
Phaser showed clear features for the omitted amino- and carboxy-
terminal helices (see Supplementary Fig. 5 and caption). Starting
from this molecular replacement solution, the ARP/wARP software
was able to complete the structure automatically, tracing all 112
residues correctly. The final result (Fig. 4d) is in excellent agreement
with the structure deposited in the PDB, which used phases experi-
mentally derived by selenium single-wavelength anomalous disper-
sion, with an r.m.s. deviation of 0.13 Å for all 112 Ca atoms. In
contrast, attempts to solve the structure by molecular replacement
with the closest existing ‘template’ 2b2j failed to produce a clear-cut
phasing solution (Table 1), even when knowledge of the optimal
superposition was used to trim this search model back to the 70
residues that aligned best to the actual structure. It will be of great
interest to investigate whether this result can be generalized to rapidly
phase diffraction data for proteins of new folds.

cba d

gfe h

Figure 2 | Improvement in model accuracy produced by rebuilding and
refinement. a–d, NMR refinement tests displaying superpositions of the
crystal structure (blue), model 1 of the NMR ensemble (red) and the lowest
energy all-atom refined model (green) for four NMR refinement test cases
(a, acyl CoA binding protein, 2abd; b, SH3 domain of ABL tyrosine kinase,
1awo; c, guaninenucleotidebindingprotein, 1ezy;d, barstar, 1ab7).e–h, Blind

predictions produced by comparativemodelling, displaying superpositions of
the native structure (blue), the best template in the PDB (red) and the best of
our five submittedmodels (green) for four CASP7 targets (e, T0380; f, T0385;
g, T0330domain2;h, T0331).A subset of the core side chains is shown in stick
representation to illustrate the accuracy of core packing. Figures were
prepared in PyMOL (Delano Scientific, Palo Alto, California).
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Acyl CoA binding protein

Improving model accuracy and molecular replacement

The results described here show that an all-atom rebuilding-and-
refinement protocol can produce protein structure models of high
accuracy. The iterative protocol outlined in Fig. 1a brings together
the individually quite powerful global optimization ideas underlying
Monte Carlo minimization16, tabu search18 and conformational
space annealing19 while targeting aggressive sampling to regionsmost
likely to be incorrect. The substantial improvements achieved in
prediction quality—in several cases enabling molecular replacement
phasing of X-ray diffraction data—suggest that structure prediction
has matured considerably. Nevertheless, we emphasize that there
is still considerable room for improvement: our high-resolution
rebuilding-and-refinement protocol does not always improve start-
ing models, and T0283 is the only CASP7 target predicted de novo for
which the models were accurate enough for molecular replacement.
We look forward to advances in both the energy function, notably the
addition of configurational entropy, and in conformational sam-
pling. The significant energy gap between the refined models and
the refined crystal structure13 for most of the cases studied here sug-
gests that sampling is still the primary bottleneck for high-accuracy
all-atom structure prediction.

At present, the Protein Structure Initiative lists hundreds of pro-
teins with lengths less than 200 residues that have been crystallized
but not yet solved. Publication of diffraction data sets that have not
yielded to experimental phasing could catalyse the development of
new hybrid prediction/phasing algorithms, much like the blind
CASP trials have accelerated progress in the field of structure

prediction. With continuing advances in high-resolution structure
prediction, in molecular replacement tools, and in the interface
between these two fields, we expect that in silico phasing will become
an increasingly important component of the crystallographer’s
toolkit.

In the present study, aggressive all-atom refinement was carried
out in the absence of any experimental information. The incorpora-
tion of experimental data into the rebuilding-and-refinement pro-
tocol could help overcome the current shortcomings in both the
energy function and conformational sampling and allow more con-
sistent high-resolution structural inference. In practical applications
to molecular replacement trials, the diffraction data do not need to
be set aside as a stringent post facto test of model accuracy, as was
carried out in this study. Diffraction data without phases would be
useful in screening larger numbers of trial structures for molecular
replacement or in complementing the physical energy terms with
diffraction-data-derived likelihood scores28 during rebuilding and
refinement. Weak phase information, for example based on anom-
alous scattering from intrinsic sulphur atoms29, could also be
exploited, for instance by using an initial molecular replacement
model to locate the anomalous scatterer sites10. Although not used
in the present study, NMR chemical shift, nuclear Overhauser effect,
and residual dipolar coupling data can help to pinpoint regions of
the models to rebuild and regions to constrain during all-atom
refinement. On a larger scale, mass spectrometry techniques coupled
with hydrogen/deuterium exchange30, chemical cross-linking31 and
radical footprinting32 show great promise for providing high-
throughput, residue-level information that may rapidly constrain
structure prediction and, in the absence of crystallographic data,
help validate models. We anticipate that the combination of high-
resolution modelling with limited experimental structural data will

a b
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Figure 4 | Ab initio phasing by ab initio modelling. a–c, Superpositions of
blind Rosetta de novo structure predictions (green) and the subsequently
released crystal structures (blue) for CASP7 targets T0354 (a), domain 3 of
T0316 (b) and T0283 (c). Buried side chains and backbone-aligned residues
are displayed. d, Electron density map (2mFo2DFc; 2s contour) produced
by automatic refinement of the molecular replacement solution obtained
from the T0283 structure prediction (black mesh; 1s contour) agrees with
the coordinates deposited in the PDB (red), solved with experimental phase
information. The electron density map immediately after molecular
replacement is shown in Supplementary Fig. 5.

Figure 3 | Improvement in electron density using models from rebuilding
and refinement in molecular replacement searches. Examples are
presented for theNMR structure of acyl CoA binding protein 2abd (a, b) and
CASP7 comparative modelling target T0385 (c and d). Black mesh
represents electron density (2mFo2DFc; 1.5s contour) using experimental
structure factors and phases from molecular replacement with the starting
model (a and c) or the refinedmodel (b and d). The coordinates deposited in
the PDB, determined using experimental phase information, are shown in
stick representation. Note that the ‘refinement’ applied to the models refers
to the all-atom energy-based protocol (see Fig. 2 and text) and not to
refinement against the diffraction data. The accurate modelling of side
chains by Rosetta was critical for the illustrated map improvement;
molecular replacement trials gave significantly better solutions if the
Rosetta-predicted side chains were retained rather than truncated.
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Superposed
crystal structure (blue), 
NMR model (red) and 
the lowest energy all-atom refined model (green)

Solving the X-ray 
crystallographic phase problem 
via molecular replacement:
Improvement in electron 
density using model from 
rebuilding and refinement in 
molecular replacement 
searches.
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Hierarchical Structure and Nanomechanics of Collagen Microfibrils
from the Atomistic Scale Up
Alfonso Gautieri,†,‡ Simone Vesentini,‡ Alberto Redaelli,‡ and Markus J. Buehler*,†,§, )

†Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute
of Technology, 77 Massachusetts Avenue Room 1-235A&B, Cambridge, Massachusetts 02139, United States
‡Department of Bioengineering, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133, Milano, Italy
§Center for Materials Science and Engineering, )Center for Computational Engineering, Massachusetts Institute of Technology, 77
Massachusetts Avenue, Cambridge, Massachusetts 02139, United States

ABSTRACT: Collagen constitutes one-third of the human
proteome, providing mechanical stability, elasticity, and
strength to organisms and is the prime construction material
in biology. Collagen is also the dominating material in the
extracellular matrix and its stiffness controls cell differentia-
tion, growth, and pathology. However, the origin of the unique
mechanical properties of collagenous tissues, and in particular
its stiffness, extensibility, and nonlinear mechanical response at large deformation, remains unknown. By using X-ray diffraction data
of a collagen fibril (Orgel, J. P. R. O. et al. Proc. Natl. Acad. Sci. 2006, 103, 9001) here we present an experimentally validatedmodel of
the nanomechanics of a collagen microfibril that incorporates the full biochemical details of the amino acid sequence of
constituting molecules and the nanoscale molecular arrangement. We demonstrate by direct mechanical testing that hydrated
(wet) collagen microfibrils feature a Young's modulus of ≈300 MPa at small, and ≈1.2 GPa at larger deformation in excess of
10% strain, which is in excellent agreement with experimental data. We find that dehydrated (dry) collagen microfibrils show
a significantly increased Young's modulus of ≈1.8-2.25 GPa, which is in agreement with experimental measurements and
owing to tighter molecular packing. Our results show that the unique mechanical properties of collagen microfibrils arise due to
their hierarchical structure at the nanoscale, where key deformation mechanisms are straightening of twisted triple-helical
molecules at small strains, followed by axial stretching and eventual molecular uncoiling. The establishment of a model
of hierarchical deformation mechanisms explains the striking difference of the elastic modulus of collagen fibrils compared
with single molecules, which is found in the range of 4.8 ( 2 GPa, or ≈10-20 times greater. We find that collagen molecules
alone are not capable of providing the broad range of mechanical functionality required for physiological function of collagenous
tissues. Rather, the existence of an array of deformation mechanisms, derived from the hierarchical makeup of the material, is
critical to the material's ability to confer key mechanical properties, specifically large extensibility, strain hardening, and
toughness, despite the limitation that collagenous materials are constructed from only few distinct amino acids. The atomistic
model of collagen microfibril mechanics now enables the bottom-up elucidation of structure-property relationships in a broader
class of collagen materials (e.g., tendon, bone, cornea), including studies of genetic disease where the incorporation of
biochemical details is essential. The availability of a molecular-based model of collagen tissues may eventually result in novel
nanomedicine approaches to develop treatments for a broad class of collagen diseases and the design of de novo biomaterials
for regenerative medicine.

KEYWORDS: Collagen, mechanical properties, deformation, molecular simulation, nanomechanics, materiomics

Collagen molecules represent the most abundant construc-
tion material in the human body, where they provide

mechanical stability, elasticity, and strength to connective tissues
such as tendons, ligaments, and bone, as well as the extracellular
matrix (ECM).1-3 Yet, we understand relatively little about how
collagen molecules combine to form larger-scale structural ele-
ments such as fibrils and fibers and how they provide crucial
mechanical properties to organisms. It is known that virtually all
collagen-based tissues are organized into hierarchical structures,
where the lowest hierarchical level consists of triple helical
collagen molecules (Figure 1).2-9 Collagen fibrils consist of
high-aspect-ratio polypeptides, tropocollagen molecules, with a

length of ≈300 nm and a diameter of about 1.5 nm, which are
arranged in a staggered configuration. This structure creates an
observable periodicity known as the D-band, where D = 67 nm.
The collagen molecule's length is not a multiple of D, where in
terms of D the collagen molecule measures 4.46 D. According to
the Hodge-Petruska model,10 a structural model of collagen
fibrils, molecules in a fibril are deposited side by side and parallel
but staggered with respect to each other, where the molecular

Received: November 10, 2010
Revised: December 7, 2010

Collagen cont.
Collagen is the main protein in our connective tissue 

What gives collagen its strength?

Amino 
Acid

Collagen
Molecule

Collagen
Microfibril

(X-ray structure,
Orgel, Dept. Biology, IIT)

Collagen
Fiber

Tissue
(tendon, bone)

Cartoon: adapted from Gauitieri et al. 2010 Varma et al., In Preparation

Atomistic Model Coarse-grained model Mechanical 
model

∂r
∂s

∂r
∂s

lp



Collagen cont.

0

0.2

0.4

0.6

0.8

0 0.8 1.6 2.4 3.2 4.0

co
s
!
s (
)

(
)

s (nm)

Lp = 2.5 nm

1 e

30 60 90 120 150 180
Time (ns)

Po
te

nt
ia

l e
ne

rg
y 

(x
 1

04
 K

J/
m

ol
)

-699.5

-698.5

-699.0

Here, kb is the Boltzmann constant,T is the temperature and      
is the axial component of the Youngʼs modulus.

atomistic simulations of the microfibril. These simulations were analyzed by 
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A Self-ConOPC Bilayer in the Presence of a Nanopore 
Paul Winston Tumaneng    and    H.L. Scott

Mechanical properties of Type I Collagen: 
Insights from molecular dynamics simulations

Sameer Varma1, Paul Tumaneng1, Olga Antipova1, Joseph P. R. O. Orgel1,  Jay D. Schieber1,2 and H. Larry Scott1

Center for Molecular Study of Condensed Soft Matter
1Department of Biological, Chemical and Physical Sciences, 2Department of Chemical and Biological Engineering

Illinois Institute of Technology, Chicago, IL

Fibrous collagens are present in all mammalian species where they form the 
structural basis for connective tissue, including those in the heart, vasculature, skin, 
cornea, bones, and tendons. While the general features of the structure of type I 
collagen have been known for a long time, the specific packing arrangement of 
collagen molecules was identified only recently (Orgel et al., PNAS, 103:9001, 2006). 
Each collagen molecule is approximately 300 nm long and 1.5 nm in diameter. It is 
made up of three polypeptide chains, called alpha chains, each containing about 1000 
amino acids. These alpha helices are twisted together into a right-handed triple helix, 
a cooperative quaternary structure presumably stabilized by inter-chain hydrogen 
bonding and other non-bonded interactions. The individual collagen molecules are 
then arranged to form a super twisted (discontinuous) right-handed microfibril that 
interdigitates with neighboring microfibrils to form the collagen fibril. To understand 
how such a hierarchical molecular packing gives rise to the mechanical properties of 
collagen, we carry out a series of molecular simulations at the atomistic resolution. 

Molecular dynamics integrator - GROMACS 4.5.3, Hess et al. 2008. JCTC 4:435
Force Fields:  Protein & Salt - Gromos 43a1s3
                       Water - SPC
Periodic Boundaries - PME electrostatics
Barostat - Parrinello & Rahman. J. Appl. Phys. 1981. 52:7128
Temperature = 310 K 
Thermostat - Hoover. 1985. Phys. Rev. A. 31:1695

Technical Details Through molecular simulations we obtain a quantitative assessment of the 
mechanical properties of collagen. The assembly of individual collagen molecules into 
fibrils enhances their persistence lengths or rigidity by three orders of magnitude.
 
Acknowledgments: Funding from ARO grant W911NF-09-2-0071. Computer time 
from μCOSM at the Illinois Institute of Technology and NCSA at the University of 
Illinois.
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The persistence length, lp, of the collagen molecule was obtained by simulating the 
molecule in atomistic detail. The simulated ensemble of molecular configurations was 
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vector at the infinitesimal fragment ds along the contour length L.
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Isolated Triple Helix
Superimposed snapshots from MD simulation of triple-helix (1/10th the original 
molecule size) in 0.2 M NaCl salt solution. Snapshots were taken at intervals of 0.5 
nanoseconds and fitted against the x-ray backbone conformation using least-squares 
method.
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atomistic simulations of the microfibril. These simulations were analyzed by 
describing the microfibril as a flexible solid rod of effective radius Reff, with
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A Self-ConOPC Bilayer in the Presence of a Nanopore 
Paul Winston Tumaneng    and    H.L. Scott

Mechanical properties of Type I Collagen: 
Insights from molecular dynamics simulations

Sameer Varma1, Paul Tumaneng1, Olga Antipova1, Joseph P. R. O. Orgel1,  Jay D. Schieber1,2 and H. Larry Scott1

Center for Molecular Study of Condensed Soft Matter
1Department of Biological, Chemical and Physical Sciences, 2Department of Chemical and Biological Engineering

Illinois Institute of Technology, Chicago, IL

Fibrous collagens are present in all mammalian species where they form the 
structural basis for connective tissue, including those in the heart, vasculature, skin, 
cornea, bones, and tendons. While the general features of the structure of type I 
collagen have been known for a long time, the specific packing arrangement of 
collagen molecules was identified only recently (Orgel et al., PNAS, 103:9001, 2006). 
Each collagen molecule is approximately 300 nm long and 1.5 nm in diameter. It is 
made up of three polypeptide chains, called alpha chains, each containing about 1000 
amino acids. These alpha helices are twisted together into a right-handed triple helix, 
a cooperative quaternary structure presumably stabilized by inter-chain hydrogen 
bonding and other non-bonded interactions. The individual collagen molecules are 
then arranged to form a super twisted (discontinuous) right-handed microfibril that 
interdigitates with neighboring microfibrils to form the collagen fibril. To understand 
how such a hierarchical molecular packing gives rise to the mechanical properties of 
collagen, we carry out a series of molecular simulations at the atomistic resolution. 

Molecular dynamics integrator - GROMACS 4.5.3, Hess et al. 2008. JCTC 4:435
Force Fields:  Protein & Salt - Gromos 43a1s3
                       Water - SPC
Periodic Boundaries - PME electrostatics
Barostat - Parrinello & Rahman. J. Appl. Phys. 1981. 52:7128
Temperature = 310 K 
Thermostat - Hoover. 1985. Phys. Rev. A. 31:1695

Technical Details Through molecular simulations we obtain a quantitative assessment of the 
mechanical properties of collagen. The assembly of individual collagen molecules into 
fibrils enhances their persistence lengths or rigidity by three orders of magnitude.
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Isolated Triple Helix
Superimposed snapshots from MD simulation of triple-helix (1/10th the original 
molecule size) in 0.2 M NaCl salt solution. Snapshots were taken at intervals of 0.5 
nanoseconds and fitted against the x-ray backbone conformation using least-squares 
method.
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Cell Membrane Potassium ChannelWater Channel

Selectively regulate K+ concentration gradients across cell membranes to enable 
numerous physiological tasks, including nerve conduction and muscle contraction

What is the basis for K+/Na+ selectivity?

Potassium Channels

Mackinnon - Nobel Prize in 2003 

Cartoon taken from: http://nobel.se

Na+  ✘Na+

K+

0.99 Å

1.33 Å

Pauling 
radius

K+  ✔



 Thermal fluctuations obscure 
sub-angstrom size differences 

between Na+ and K+ ions

Noskov et al., Nature 2004

Problems with the conventional picture

New picture of K+ in water

Quantum mechanical simulation

The probability to find an 8-fold 
coordination is negligible in liquid water

The binding sites in K-channels 
(1) DO NOT mimic the structure of K+ ions 
in bulk water and, in fact,
(2)  over-coordinate the K+ ion.  

Varma & Rempe, Biophys. Chem., 2006



Problems with the conventional picture
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K-channel filter adopts multiple configurations during ion binding

NaK channels 
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channels but are 
non-selective
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Valinomycin
does not share an 
overall 
architecture with 
K-channels, but is 
as selective as K-
channels 

X-ray structures: 
Mackinnon and coworkers

X-ray structure:
 Jiang and coworkers



Na+ and K+ in liquid water
(Low coordination)

Strongly selective 
K-channels
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Na+ and K+ in liquid water
(Low coordination)

Strongly selective 
K-channels

Constrain coordination 
number > 6

Valinomycin

Constrain cavity 
size

Additional 
possibilities

Different mechanisms of K+/Na+ selectivity

Liquid Dimethyl 
Thioformamide

Weakly selective 
NaK channel

Weaken constraint 
on high coordination

Varma et al.
JBC 2006  

BJ 2007
  JMB 2008
JACS 2008  

BJ 2010
 JGP 2011 

Enhance 
Flexibility

Intra-molecular  
      H-bonds

Weakly selective 
K-channels 
(Eg. HERGs)

Introduce H-bond 
donors in local env.

Introduce 
special ligand 

chemistry
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