| Illinois Institute of |
| :---: | :---: |
| Technology |

Electromagnetic Radiation

- Much of this course deals with the interaction between electromagnetic radiation (usually ionizing) and matter
v So we need to review the properties of electromagnetic radiation
\checkmark EM radiation encompasses a wide range of energy / wavelength / frequency
- lonizing radiation: $\mathrm{E}=3 \mathrm{KeV}-\mathrm{up}, \lambda=0.4 \mathrm{~nm}$ down
- Visible light is lower-energy ($\mathrm{E} \sim 1 \mathrm{eV}, \lambda \sim 500 \mathrm{~nm}$)

... or in graphical form

Maxwell's contribution

- These rules predated Maxwell. He showed they could be made self-consistent by recognizing that a changing electric field induces a magnetic field; thus the integral and differential forms of Maxwell's equations.

08/04/2008
Radbio Bootcamp, Lecture 2
p. 6 of 22

What Maxwell's laws mean for radiation

- The electromagnetic field travels away from its source with velocity $=3 * 10^{8} \mathrm{~m}$ $/ \mathrm{sec}$. This turns out to be the velocity of light, so evidently light is an electromagnetic wave!
マ Relationship between frequency and wavelength:
$c=v \lambda$

08/04/2008
Radbio Bootcamp, Lecture 2
p. 7 of 22

Einstein's photoelectric effect

- Energy of photons goes into enabling the electrons to escape from the surface, plus their kinetic energy after they do so:

$$
E_{\text {photon }}=h v=E_{0}+K_{\max }
$$

\checkmark Here E_{0} is the work function,
$K_{\max }$ is max electron energy

08/04/2008
Radbio Bootcamp, Lecture 2
p. 9 of 22

Special Relativity: Energy

- Einstein's new rules require that time \& distance formulae depend on velocity
- Corrections are significant in nuclear

Hendrik reactions, radiation scattering, and accelerators, so we study them here a little

- They also give rise to the concept of relativistic energy:
$E=m_{0} c^{2} / \sqrt{ }\left(1-v^{2} / c^{2}\right)$, or $E=\Upsilon m_{0} c^{2}$, where $\Upsilon=\left(1-v^{2} / c^{2}\right)^{-1 / 2}$
08/04/2008 Radbio Bootcamp, Lecture 2 p. 11 of 22

Planck's contribution

v Planck sought to understand radiation in a cavity by assuming that the atoms in the cavity were electromagnetic oscillators with characteristic frequencies and the oscillators would absorb and emit radiation
v He also posited that the oscillators were constrained to have energies $E=(n+1 / 2) h v$
where $v=$ frequency, $h=$ a constant
08/04/2008 Radbio Bootcamp, Lecture 2
p. 8 of 22

Special Relativity

Automobile traveling along train roof velocity with respect to train $=w^{\prime}$

Einstein modified Galilean relativity, under which velocities are additive.

- Galileo: automobile velocity with respect to ground $=u=v+w$
Vinstein says: $u<c$ so we need new rules!
p. 10 of 22

Rest energy and mass

∇ If $v=0, E=E_{0}=m_{0} c^{2}$; this is rest energy if m_{0} is the rest mass, i.e. the mass as it is ordinarily defined.
v We can summarize the results by defining a relativistic mass m so that we can say $E=m c^{2}=\gamma m_{0} c^{2}$ where $m=\gamma m_{0}$
v For $v=0.1 c, m=1.05 m_{0}$; for $v=0.98 c, m=5 m_{0}$.

Bohr model: radius

V Quantized angular momentum $m v r=n h / 2 \pi$

- But this is associated with coulombic attraction for which the centripetal force must equal the coulombic force:

$$
F=m v^{2} / r=k Z e^{2} / r^{2}, \text { so } r=k Z e^{2} / m v^{2}
$$

- Thus $v=n h /(2 \pi m r)=2 \pi k Z e^{2} / n h$
so $r=n^{2} h^{2} /\left(4 \pi^{2} k Z e^{2} m\right)$
v For $n=Z=1, r=0.529^{*} 10^{-10} \mathrm{~m}=$ Bohr radius

Bohr model: Electron Energies

- Velocity $=v=2 \pi k Z e^{2} /(n h)$
∇ Kinetic energy $=1 / 2 m v^{2}=2 \pi^{2} k^{2} Z^{2} e^{4} m /\left(n^{2} h^{2}\right)$
\checkmark Potential energy $=-k Z e^{2} / r=-4 \pi^{2} k^{2} Z^{2} e^{4} m /\left(n^{2} h^{2}\right)$
\checkmark Total energy $=\mathrm{KE}+\mathrm{PE}=-2 \pi^{2} k^{2} Z^{2} e^{4} m /\left(n^{2} h^{2}\right)$
\checkmark Photons emerge from transitions from one value of n to another.
- Transition from $n=3$ to $n=2$ gives photon energy $=-2 \pi^{2} k^{2} Z^{2} e^{4} m /\left[(1 / 9-1 / 4) h^{2}\right]$ $=1.89 \mathrm{eV}$

08/04/2008

Wave Behavior in electrons

マ Nonrelativistic approximation: $K E=(1 / 2) m v^{2}$ so $\lambda=h /(m v)=h(2(K E) m)^{-1 / 2}$
マ Further, since the angular momentum $m v r$ is quantized ($m v r=n h /(2 \pi)$), we can say $2 \pi r=n \lambda$
∇ So we can say that the circumference of the electron's orbit is an integer multiple of the electron's wavelength! Standing waves!

[^0]
Assignment associated with this lecture:

- Alpen, chapter 2, problem 1:

Assume an oscillating spring that has a spring constant, k, of $20 \mathrm{Nm}^{-1}$, a mass of 1 kg , and an amplitude of 1 cm . If Planck's radiation formula describes the behavior of this system, what is the quantum number, n . What is ΔE if n changes by 1 ? The frequency of a simple oscillator is given by $v=(1 / 2 \pi)(k / m)^{1 / 2}$

08/04/2008
Radbio Bootcamp, Lecture 2

Assignment, continued:

- Alpen, chapter 2, problem 5: In the previous problem, what is the de Broglie wavelength of the maximum kinetic energy electron emitted from the surface? What is its momentum?

Assignment, continued:

v Alpen, ch.2, problem 4: A proposed surface for a photoelectric light detector has a work function of $2.0^{*} 10^{-19} \mathrm{~J}$. What is the minimum frequency of radiation that it will detect? What will be the maximum kinetic energy of electrons ejected from the surface when it is irradiated with light at $3550 \AA(355 \mathrm{~nm})$?

Assignment, concluded:

v (from my head...):
The Advanced Photon Source (APS) at Argonne National Laboratory produces X-rays from electrons that have been accelerated to an energy of approximately 7 gigaelectron volts. This corresponds to an electron velocity very close to the speed of light. If an APS electron's speed is v, calculate $c-v$ in $\mathrm{m} / \mathrm{sec}$ to two significant figures.

[^0]: 08/04/2008
 Radbio Bootcamp, Lecture 2
 p. 18 of 22

