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How do we define survival?
 It’s not as easy at the cellular level as you might think.
 It takes a lot of radiation to destroy metabolism.
 It takes a lot less to compromise DNA replication

badly enough to either:
– Prevent replication after 1-4 generations
– Produce large changes in morphology or function,

again after 1-4 generations
 Therefore: we concentrate on clonogenic survival as a

definition for cell survival
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What kind of experiments do we
envision here?

 Small number of cells placed on a growth medium
 Cells are exposed to a toxicant or to radiation
 Cells allowed to divide for some number of generations
 We compare the number of progeny in the treated cell

group to the number in the untreated group
 Damage is said to be significant if the treated group

produces fewer progeny than the control group
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What do we mean by clonogenic
survival?

 Clean definition: clonogenic survival is the ability to produce
six generations of viable offspring

 This works well for prokaryotic cells and cultured eukyarotic
cells, particularly immortalized ones

 It works less well for differentiated eukaryotic cells:
– A respectable eukaryotic cell has a chromosomal component

called a telomere that regulates the number of cell divisions
before the cell undergoes programmed cell death (apoptosis)

– If the cell you’re studying is close to its natural cutoff point for
cell divisions, it’s clearly unfair to blame the treatment for its
inability to produce five generations of progeny!
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Six generations…
 Roughly corresponds to 50 surviving progeny
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Contact inhibition
 Many cells change behavior when they come into

contact with neighbors
 Often the change involves inhibition of replication
 That complicates the definition of clonogenic survival:
 If the cells stop dividing because they’re getting too

crowded, it’s unfair to blame that on the treatment!

Changes
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What’s an immortalized cell line?
 Certain transformed cell lines lose their responsiveness

to cell-cell communication and to the apoptotic count
 These cells can replicate without limit
 Often this kind of transformation is associated with

cancer
 It’s always questionable whether experiments on

transformed cell lines are telling us anything useful
about the behavior of untransformed cells

 But we’re somewhat stuck with this kind of system
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Mechanisms of Reproductive Cell
Survival and Death

 Up until around 1970 there were two
highly disparate lines of research
surrounding these issues:

– Modelers, who carried out mathematical
studies of dose-response;

– Biologists, who sought understanding of
the mechanisms of the cellular response

 Enzymatic
 Molecular-biological

 Since 1970 there has been better
communication between these two
communities

Dose

ln(Survival fraction)
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Sorting out multiple causes
 … can be tricky.
 Ancient study of uranium mine workers:

Status Smoking Non-smoking
Miner 1 2
Non-miner 3 4

 Result:
cancer(1) > cancer(3) >> cancer(2) ~ cancer(4)

 So the effect of mining is potentiated by smoking
 We’d like to know why!
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Lea’s model for cellular damage
 Four basic propositions (1955):

– Clonogenic killing is multi-step
– Absorption of energy in some critical volume is step 1
– Deposition of energy as ionization or excitation in the

critical volume will give rise to molecular damage
– This molecular damage will prevent normal DNA

replication and cell division
 Alpen argues that this predates Watson & Crick.

That’s not really true, but it probably began
independent of Watson & Crick
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Lea’s assumptions
 There exists a specific target for the action of radiation
 There may be more than one target in the cell, and the

inactivation of n of these targets will lead to loss of
clonogenic survival

 Deposition of energy is discrete and random in time &
space

 Inactivation of multiple targets does not involve any
conditional probabilities,
 i.e., P(2nd hit) is unrelated to P(1st hit)
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Typos in Alpen
 Alpen seems to have replaced D with D! several times
 Several terms have too many factorial signs in them;

– Eqn. 7.3 should be P(ρ,h,D) = (DCh)(ρh)(1-ρ)(D-h)(H(h))

– Eqn. 7.4 should be S(ρ,D) = Σh=0
h=D P(ρ,h,D)

 Axis labels are faulty sometimes too:
Pp. 136-137: the lowest number on the Y axis should
be 0.01, not 0.001
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The role of DSBs
 We will eventually want to emphasize

unrepairable DNA damage as the true bad actor
in all of this

 We saw at the end of last class that double strand
breaks are harder to repair with high fidelity

 So DSBs are likely to be the real issue here
 You can begin to see the utility of an interaction

between the modelers and the biologists!
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Log-linear response
 With cells that are distinctly

deficient in DSB repair (e.g.,
bacterial cells):

 Log-linear dose-response to
radiation over several logs
ln(N/N0) = -D/D0

 N0 is the number of cells prior
to treatment
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The cellular damage model
 Cell has volume V; target volume is v << V
 Mechanistically we view v as the volume

surrounding the DNA molecule such that
absorption of energy within v will cause DNA
damage.

Cell, volume VNucleusSensitive
volume v

5 µm
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Single-target, single-hit model

 In this instance, each hit within the volume v is
sufficient to incapacitate the cell

 Define S(D) as the survival fraction upon
suffering the dose D. Define S0 = survival
fraction with no dose.

 Note that S0 may not actually be 1:
some cells may lack clonogenic capacity even
in the absence of insult

 Then: S/S0 = exp(-D/D0)
 D0 = dose required to reduce survival by 1/e.

08/05/2008 RadBio Bootcamp: Lecture 6 p. 17 of 41

STSH model: graphical behavior

 Slope of curve = -1/D0

 Y intercept = 0
(corresponds to S/S0 = 1)
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Multi-target, single-hit model
 Posits that n separate targets must be hit
 Probabilistic algebra given in Alpen
 Outcome: S/S0 = 1 - (1 - exp(-qD))n, or for D0=1/q,

 S/S0 = 1 - (1 - exp(-D/D0))n

 This model looks at first glance to involve a very
different formula, but it doesn’t, really:

 For n = 1, this is S/S0 = 1 - (1 - exp(-D/D0))1

 But that’s just S/S0 = exp(-qD), i.e. ln(S/S0) = -qD
 That’s the same thing as STSH.
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MTSH algebra
 Physical meaning of exponent n:
 Based on the derivation, it’s the number of

hits required to inactivate the cell.
 Physical meaning for n>1: ln(n) =

extrapolation to D=0 of the linear portion of
the ln(S/S0) vs. D curve.
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A semi-real case: n=5, D0= 2 Gy
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Behavior of this function for D >> D0

 For D >> D0, exp(-D/D0) << 1 so we can expand it:
 (1- exp(-D/D0))n = (1 - x)n ~ 1 - nx

for x = exp(-D/D0) << 1
 Therefore 1 - (1- exp(-D/D0))n = nx = nexp(-D/D0)
 Thus ln(S/S0) = ln(1 - (1- exp(-D/D0))n)

= ln(nexp(-D/D0) = ln n - D / D0

 So the behavior for high doses is log-linear
– with slope = -1/D0, just as in the STSH model,
– But with Y intercept = ln n rather than 0.
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Extrapolating to D=0

ln(5)

Note that the low-dose limit
doesn’t correspond to
physical reality because the
line is based on D>>D0, but
it’s good to look at it
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Low-dose limit for MTSH with n > 1
 At exactly D=0, S/S0 = 1 as we would expect
 Curve departs from linearity, though
 Slope of ln(S/S0) vs. D curve at low dose:

 ln(S/S0) = ln(1 - (1 - exp(-D/D0))n)
 Remembering that d(ln(u))/dx = (1/u)du/dx,

d/dD [(ln(S/S0)] = (1-(1-exp(-D/D0))n)-1*
(0 - (1 - exp(-D/D0))n-1)*(-1/D0)*exp(-D/D0) =
 (1-(1-exp(-D/D0))n)-1(- (1 - exp(-D/D0))n-1))*
(-1/D0) exp(-D/D0). For D = 0, this is

 d/dD[ln(S/S0)] = (1-(1-1)n)-1(-(1-1)n-1))(-1/D0)1 = 0.
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So what if the slope is zero?
 It’s been routinely claimed that the flat slope at low

dose is a deficiency in the MTSH model:
 It implies that at very low dose, the exposure has no

effect
 That’s politically unpalatable, and it flies in the face of

some logic.
 BUT it is consistent with the notion that there might be

a “threshold” dose below which not much happens
 There are a number of circumstances where that

appears to be valid!
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MTSH Quasi-Threshold Dose
 We note that the curve stays close to linear until we get

to fairly low doses.
 We describe Dq = dose at which the linear extrapolation

hits ln(S/S0) = 0, i.e. S=S0:
 Since the line is ln(S/S0) = ln n - D/D0,

0 = ln n - Dq / D0, so Dq = D0ln n
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Quasi-Threshold Dose Graphically

Dq=D0 ln(n) =
2*ln(5) = 3.21
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Deficiencies in the MTSH model
 Zero slope at zero dose (is that really bad?)

We can tweak this if we need to:
S/S0 = exp(-q1D)(1 - (1-exp(-D/D0)n)
ln(S/S0) has slope -q1 at D=0.

 High-dose behavior:
– Does it remain truly linear at D >> D0?
– Some suggestions that it doesn’t:

maybe D0 gets bigger, i.e. the slope gets steeper,
at very high dose (saturating repair mechanisms?)

 Derivation may or may not match realities
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What do we do about this?
 Maybe we need to set aside MTSH!
 Late 1970’s through today: other more

explicitly repair-based models were concocted.
 Most wind up proposing linear-quadratic

solutions, i.e.
ln(S/S0) = α*D + β*D2

 The logic behind this varies from derivation to
derivation, but the final results are hauntingly
similar
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Repair-based models
 Introduction

– Poisson statistics
– 2-term Taylor Expansions

 Linear-Quadratic Models
– Molecular Model
– Dual Radiation Action Model
– Repair-misrepair model
– Lethal-Potentially Lethal model

 Graphical Implications
 Limitations of Applicability
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Poisson survival
 Alpen’s comment:

A cell can be killed only once, and further action on
remaining cells is constrained to that smaller
number of cells.

 This is equivalent to saying
dN = N * d(f(D)), I.e. dN/N = d(f(D)), or
ln(N) = f(D) lnN0, I.e. ln(N/N0) = f(D)

 But S = N/N0, so we have a basic formalism:
ln(S) = f(D), where f(D) is some function of dose.
Let’s seek out the appropriate functional form.
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Linear-Quadratic Model:
Generalized Form

 Back away temporarily from mechanistic approaches,
and say that given Poisson statistics for lethality
ln(S) = f(D), where f is some function

 For an arbitrary function f(D), we Taylor expand in D:
 ln(S) = a0 + a1D + a2D2 + . . . + anDn + . . .

Where ai are the Taylor coefficients
(including the factorials in the denominator)

 But we take a0 = 0 because at D = 0
the survival fraction is 1, i.e. ln(S) = 0

 Thus the second-order expansion is
ln(S) = a1D + a2D2
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Molecular Model
 This emphasizes double-stranded breaks in DNA

as a source of lasting damage
 Distinguishes between single hits causing DSBs and

pairs of hits causing DSBs:
Ultimately, the pairs of hits give rise to the quadratic
dependency on D in the formulas

 The derivation in Alpen is okay, but we wind up with a
few parameters that aren’t independently determinable
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Dual Radiation-Action
Formulation

 Emphasizes that a single interaction between a high-
LET radiation event and a cell produces a DSB,
whereas low-LET radiation requires pairs of events

 Gives rise to a linear-quadratic model:
 The one-event DSB (linear) coefficient predominates

for high-LET radiation
 The two-event (quadratic) coefficient predominates for

low-LET radiation
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Tobias: Repair-Misrepair Model
 Posit: linear and quadratic mechanisms up front

for repair, with explicit time-dependence
 Time-independent formulas arise at times that are long

compared with cell-cycle times
 In those cases

S = exp(-αD)(1+αD/ε)ε
where ε = λ/k is the ratio of the repair rates of linear
damage to quadratic damage.

 This gives roughly quadratic behavior in ln S.
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Lethal - Potentially Lethal Model
 Sets up a three-state system:
 Undamaged cells (A)
 Potentially-lethally-damaged cells (B)
 Lethally damaged cells (C)
 Eurepair returns state B to state A
 B automatically becomes C at long times
 Gives rise to explicit quadratic formulation

ln(S) = αD + βD2

with α and β having explicit time-
dependence

A

B
C
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LQ Graphical Analysis
 At low dose the linear dependence predominates;

at higher doses the quadratic dominates

ln(S/S0) = αD + βD2

Can we assign
physical significance
to α and β, or perhaps
to β/α?
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How do we linearize the relationship?

 Pretty simple, actually:
ln(S/S0) = αD + βD2 means
ln(S/S0) / D = α + bD

 So: plot ln(S/S0) / D versus D.
 Y-intercept = α
 Slope=β
 By convention α < 0 (radiation kills!)
 β is generally < 0 also

ln
(S

/S
0)

 / 
D

α

Slope = β
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What are the units of α, β, and α/β?
 In order for αD to be unitless,
α must be measured in terms of inverse
dose, e.g. α is in Gy-1

 In order for βD2 to be unitless,
β must be measured in terms of inverse
dose squared, e.g. β is in Gy-2.

 Therefore α/β must be in units of dose,
e.g in Gray
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Modeled significance of α/β
 Suppose we expose a cell line to a dose equal to α/β.
 Then ln(S/S0) = αD + βD2

= α(α/β) + β(α/b)2 = α2/β + α2/β
 Thus at dose D = α/β,

influence from linear term and
influence from quadratic term are equally significant

 Thus it’s the crossover point:
– Linear damage predominates for D < α / β
– Quadratic damage predominates for D > α / β
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Clonogenic survivability
 Even unirradiated cells don’t provide 100% survival;
 Survival for irradiated cells has to be normalized

against what’s happening to the controls
 This sets an upper limit on the accurace of the

determinations
 You also need to set up a lot of plates

(Poisson statistics)
 This limits one’s ability to distinguish between two LQ

models or between an LQ model and an MTSH model
on the basis of the resulting muddy data
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Another limitation on accuracy and
applicability: feeder cells

 Often the treated cells survive poorly if they aren’t
provided with metabolites from neighboring cells

 So we irradiate a set of cells enough that they
cannot divide but they can metabolize

 Plate out the cells you wish to study atop those
 This provides a feeder-cell layer that will supply the

cells we wish to study
 This limits applicability because the feeders can be

problematic
 Recent advances make this less of an issue than

before


