

How much time do these segments take?			
 Depends on the overall mitotic rate and the type of cell: Cell Cycle Times in hours: 			
Segment	СНО	HeLa	
М	1	1	
G1	1	11	
S	6	8	
G2	3	4	
TOTAL	11	24	
RadBio Bootcamp, Lecture 5 16/39			

Causes for these effects

- Why are cells more radiosensitive in M and G2? - Availability of repair enzymes

 - Repackaged DNA is hard to repair
- How is cell progression influenced by radiation?
 - Damage to protein kinases and cyclins involved in cellular checkpoints
 - Premature degradation of p21, maybe...

RadBio Bootcamp, Lecture 5 25/39

Arithmetic & Calculus of Survival Models

- MTSH says S/S₀ = 1 (1-e ^{-D/D0})ⁿ
- What I want to investigate is the slope at low dose, I.e. for $D \leq D_0$,
- And at high dose, I.e. for D << D₀.
- But are we interested in the slope of S/S0 vs. D or $ln(S/S_0)$ vs. D?
- Both!
- Slope = derivative with respect to D. So
- Slope = $d/dD(1 (1 e^{-D/D_0})^n) = -d/dD(1 e^{-D/D_0})^n$

RadBio Bootcamp, Lecture 5 26/39

MTSH slope, continued

- Recalling that $du^n/dx = nu^{n-1}du/dx$, for n>1,
- Slope = $-n(1-e^{-D/D_0})^{n-1} d/dD (1-e^{-D/D_0})$ = $-n(1-e^{-D/D_0})^{n-1} (-d/dD(e^{-D/D_0}))$
- But we know de^udx = e^u du/dx, so d/dD(e $^{-D/D_0}$) = e $^{-D/D_0}$ (-1/D₀) = -1/D₀ e $^{-D/D_0}$
- Therefore Slope = $-n(1 e^{-D/D_0})^{n-1} (-)(-1/D_0 e^{-D/D_0})$
- i.e. Slope = -n/D₀(1-e -D/D₀)ⁿ⁻¹e -D/D₀
- This formula is valid for all values of D, including $D \ll D_0$ and $D \gg D_0$

RadBio Bootcamp, Lecture 5 27/39

Slope at $D \ll D_0$

- For small D, I.e. for D << D₀,
- Slope is $-n/D_0 (1-e^{-0/D0})^{n-1}e^{-0/D0}$ = $-n/D_0 (1-e^{0})^{n-1}e^{-0}$; for n > 1 this is = $-n/D_0 (1-1)^{n-1} = 0$. Shazam.

RadBio Bootcamp, Lecture 5 28/39

Slope of $ln(S/S_0)$ vs D The behavior of the slope of the ln(S/S₀) vs D curve is not much harder to determine. Recall d Inu dx = (1/u)du/dx. We apply this here:

- ◆ d ln(S/S₀) / dD = (1/(S/S₀)) d(S/S₀)/dD.
- For very small D, S/S₀ = 1, so d ln(S/S₀) / dD = (1/1) * d(S/S₀)/dD = $d(S/S_0)/dD$.
- But we've just shown that that derivative is zero, so $d \ln(S/S_0) / dD = 0.$

RadBio Bootcamp, Lecture 5 29/39

High-dose case, continued

٠

- Slope = $\lim_{D \to \infty} (1 (1 e^{-D/D_0})^n)^{-1} (-n/D_0) (1 0)^{n-1} e^{-D/D_0})$
- That's messy because the denominator and the numerator both go to zero. There are ways to do that using L'Hôpital's rule, but there are simpler says that don't involve limits.
- The trick is to recognize that we can do a binomial expansion
- I'll do that in a separate set of HTML notes
- The result will be slope = -1/D₀ and ln n is the Y intercept of the extrapolated curve

RadBio Bootcamp, Lecture 5 31/39

Linear-Quadratic Model

- This is simpler. $\ln(S/S_0) = \alpha D + \beta D^2$
- Therefore slope = $d/dD (ln(S/S_0)) = d/dD(\alpha D + \beta D^2)$
- Thus slope = α + 2 β D. That's a pretty simple form.
- At low dose, $|\alpha| >> 2|\beta|D$, so slope = α .
- At high dose (what does that mean?) $|\alpha| \ll 2|\beta|D$, so slope = $2\beta D$.
- What constitutes a high dose?
- Well, it's a dose at which $|\alpha| \le 2|\beta|D$, so D >> $|\alpha / 2\beta|$
- Thus if dose >> $|\alpha / 2\beta|$, then slope = $2\beta D$.

RadBio Bootcamp, Lecture 5 32/39

- We discussed this last time: $\ln(S/S_0) / D = \alpha + \beta D,$
- so by plotting $\ln(S/S_0) / D$ versus D, we can get a simple linear relationship.

RadBio Bootcamp, Lecture 5 33/39

