

	Durki			
	Probl	em 9.1, co	ontinuea	
[O ₂], %	OER	[O ₂], %	OER	
0.1353	1.10	0.7788	2.19	
0.223	1.20	1.00	2.59	
0.2865	1.33	1.75	2.77	
0.3679	1.64	2.50	2.81	
0.6065	1.88			
•What is th •What is th	ie value of K in he ratio of type	n the same expr a 1 to type 2 dan	ession? nage in this cel	l line?
08/06/2008	3 Ra	dBio Bootcamp: Leo	cture 10	p. 5

Rem	nember how this work	s:
 Alpen, p. 205 When [O₂] is S/S_N = (m[O₂ Therefore we value of S/S_N Then we reco formula beco S/S_N = (m[O₂ So we find th and that value 	:: very much larger than K, $_{2}$] + K) / ([O ₂] + K) = (m[O ₂]) / ([e can compute m by finding the $_{1}$ (for [O ₂] very large) ognize that if K = [O ₂], then our mes $_{2}$] + [O ₂]) / ([O ₂] + [O ₂]) = (m+1) e value of [O ₂] for which S/S _N = e of [O ₂] will be K. Shazam.	O ₂]) = <i>m</i> asymptotic general / 2 = (<i>m</i> +1)/2
08/06/2008	RadBio Bootcamp: Lecture 10	p. 6 of 53

Но	mework Hi	nts, Continued	<u>1</u>
 Hewitt dilu from curves s radiation dos 	ution assay: shown, we can est e:	imate the LD ₅₀ for each	
	Dose, Gv		
	0	6.5	
	1	11.6	
	2	13.8	
	4	20.1	
	5	65	
	6	159	
	8	598	
So $S/S_0 = (L)$	D ₅₀ at a given dos	e)/ (LD ₅₀ at Dose=0).	
08/06/2008	RadBio Bootca	mp: Lecture 10	p. 10 of 53

Developmental Stages in Spermatogenesis in the Mouse

Cell type		Days to mature spermatozoon	LD ₅₀ (Gy)
Type A spermat (type A_S , A_1 - A_4	ogonia)	35-45	> 2
Intermediate spermatogonia	l	32-35	0.2
Type B spermat	ogonia	30-35	1.0
08/06/2008	RadBio Boo	otcamp: Lecture 10	p. 23 of 53

Spermatogenesis, concluded			
Cell type	Days to mature spermatozoon	LD ₅₀ (Gy)	
Primary spermatocytes*	20-35		
Resting (preleptotene)		2	
Leptotene, Zygotene		5	
Pachytene	U	nknown	
Diplotene		8	
Diakinesis		9	
Secondary spermatocytes	20-22	10	
Spermatids	7-20	15	
Spermatozoa	0-7	500.	
08/06/2008 RadBio Boo	tcamp: Lecture 10	p. 24 of 53	

p. 40 of 53

p. 44 of 53

b Constant and a constant of the series of

