

A	verag	e LET, ke	∕ µm⁻¹	
Table 14.1:	:			
Radiation type		(LETav) _T	(LETav) _E	
⁶⁰ Co γ-rays		0.27	19.6	
250 kVp x-rays		2.6	25.8	
3 MeV neu	trons	31	44	
Radon α rays		118	83	
14 MeV ne	utrons	11.8	125	
Recoil prot	ons	8.5	25	
Heavy recoils 142		142	362	
 Looks like intuitive not 	the (LET tion of wh	av) _{TS} is more in a nat constitutes LE	accord with ou T!	ur
08/07/2008	RadBio	o Bootcamp: Lecture	14	p. 10 of 34

Direct & Indirect Effects							
♦High Ll a small r	ET mean neighborh	s that many i lood	onizations	occur in			
	LET	Spur energy	Events/µm	Spacing			
	Kev/µm	eV		nm			
60Co γ	0.25	60	4	250			
Radon o	x 118	60	2000	0.5			
♦This factoring of the second sec	ct by itse e in biolo	f accounts fo gical conseq	or much of quence of h	the iigh LET			
08/07/2008	Rad	Bio Bootcamp: Le	cture 14	p. 11 of			

Probability of Traversals									
◆Table very ra	e 14.2 show are even at h	s that mu nigh dose	iltiple tra	versals of	the nucle	eus are			
♦It also	o shows a c	lose corr	esponde	ence betwe	en cross	section			
for turr	nor production	on and c	ross-sec	tion for tra	versal				
Dose,	<fluence <="" td=""><td>Probab</td><td colspan="5">Probability of traversals</td></fluence>	Probab	Probability of traversals						
Gy	cell>	0	1	2	>= 1				
0.01	0.006	0.993	0.006	2.1*10 ⁻⁵	0.006				
0.02	0.013	0.987	0.013	6.8*10 ⁻⁵	0.013				
0.05	0.032	0.968	0.031	5.0*10 ⁻⁴	0.032				
0.15	0.097	0.907	0.088	4.0*10 ⁻³	0.092				
0.20	0.129	0.878	0.114	7.0*10 ⁻³	0.121				
0.30	0.193	0.823	0.159	1.5*10 ⁻²	0.176				
0.40	0.258	0.772	0.199	2.5*10 ⁻²	0.227				
08/07/20	008	RadBio	Bootcamr	: Lecture 14		p. 26 of 24			
00,0112000			Radbio Bootoamp. Ecolare 14			p. 26 01 34			

