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Housekeeping

The homework associated with last week’s lecture is 
due at 11:59 pm Friday 2 Feb.  Homework for the 
internet students is due one week later. This pattern 
will persist throughout the semester.  Remember that 
the course’s internal website is 
http://icarus.csrri.iit.edu/radbio/
and the material there is updated frequently.
Homework may be turned in either on paper, by e-
mail, or by fax. Faxes for Prof. Howard:
630-252-0521
312-567-3576
Prof. Howard’s pager number is 312-902-9816.
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Interaction of Photons with Matter

� Let N0 = Number of photons in
� N = Number of photons out
� t = thickness of absorber
� µ = attenuation coefficient (dimensions: L-1)
� Then: N = N0exp(- µt)
� Mass attenuation coefficient µ/ρ (ρ = density)
� Since dimensions of density are ML-3, µ/ρ has 

dimensions of L2M-1; it’s a cross-section
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Cross-Section and Attenuation
Attenuations described in terms of 

L2/(something)
Area → cross section
large cross section ⇒ high probability of 

interaction
Thus several kinds of attenuation coefficients:

Type Dimensions Units
� Linear(µ) L-1 m -1

� Mass (µ/r) L2M-1 m2kg-1

� Electronic (eµ) L2q-1 m2e-1

� Atomic (aµ) L2(atom)-1 m2(atom)-1
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Energy Transferred and Absorbed
Energy in, out, absorbed, and leaving:
Ein → Etr + Eout

Etr = Eabs + Eleave

so transferred energy is greater than absorbed 
energy

We define separate attenuation coefficients:
� Energy transfer attenuation coefficient
� Energy absorbed attenuation coefficient
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Photoelectric Effect

 Most significant at 
low to intermediate  
photon energies
(~ 10 - 100 keV)
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Cross-section falls off rapidly 
with Energy and is Z-dependent

K and L orbital edges fall within the plot for 
many metals, not for light atoms
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Compton Scattering
1.  Energy conservation
2.  Momentum conservation in x
3.  Momentum conservation in y
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Momentum conservation in x and y:
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Compton Scattering:  Equations

Since m0c2 = 0.511 MeV,
if hν = 5.11 MeV, then α = 10.
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Compton Scattering:  Results

hν’ = hν / (1 + α (1 - cosθ))

KEout
e( ) = hνα 1 − cosθ( )

1 +α 1− cosθ( )
h ′ ν = hν − KEout

e( )

h ′ ν = hν − hν α 1 − cosθ( )
1 +α 1 − cosθ( )
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Compton Scattering: Special Cases

� Recoil: θ = 180º, cosθ = -1
KEe

out = 2hνα / (1 + 2α);
hν’ = hν/(1 + 2α); max. energy to e-.

� Minimum energy transfer to electron:
θ = 0º, cosθ = 1, KEe

out ≈ 0, hν’ = hν
� Low-energy photon, α << 1:

hν’ ≈hν, KEe
out ≈hν α(1-cosθ)

� High-energy photon, α >> 1:
hν’ ≈hν / [α(1-cosθ)], KEe

out ≈ hν
(minor significance)
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Compton Cross Section:
Klein-Nishina formulation

diff: dσ
dΩ

=
dσ o
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differential
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Formulae for Cross-Sections

Total Cross-section:

Tot σ o = π ro
2 1 + u 2( ) − du( )
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Compton Scattering 
Cross Section

FKN is a geometry-dependent quantum-
mechanical factor given as eqn. 4.30;
FKN ≤1; FKN → 1 as θ → 0° or as α → 0.

4.27 :
deσ l

dΩ
=

r0
2

2
(1+ cos2 θ)

4.29 :
dσ
dΩ

=
dσo

dΩ
FKN =

ro
2

2
1 + cos2 θ( )FKN
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Energy of Compton Electrons
� From standard Klein-Nishina equations we can 

determine the spectrum of Compton electon 
energies.

� KEmax of electron is close to photon energy
– Eγ = 0.5 MeV implies KEmax(e-) = 0.331 MeV
– Eγ = 1.0 MeV implies KEmax(e-) = 0.796 MeV
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Effect of Binding Energy

� Typical Compton treatments assume 
free electrons: this is close to right.

� Sharp fall-off in total coefficient at low 
energies (below 50 KeV), but not 
much gets transferred at those 
energies anyway, it doesn’t affect the 
equations much
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Pair Production

� Can happen if Eγ > 1.022 MeV = 2 * m0(e-)
� Rapidly increasing cross-section > 1.022 MeV
� Stopping power/atom varies as Z2

� Energy transferred is (hν - 1.022) MeV
� Scattering nucleus plays fairly passive role

(not much momentum transferred to nucleus)
� Generally the positron gets annihilated, giving 

off another pair of 0.511 MeV photons. These 
generally escape and are not part of the 
absorbed energy
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Bremsstrahlung:
Radiative Energy Loss

� “Braking radiation”:
A fast electron loses energy to its environment 
in a nonspecific way due to Coulombic 
interaction with neighboring charged particles.

� The static particles are much more massive 
than the electron, so they don’t get accelerated 
nearly as much as the electron does: but the 
electron does get accelerated.

� What happens when an electron is 
accelerated? It has to radiate! This type of 
Coulombically-motivated radiation is 
Bremsstrahlung
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Significance of Bremsstrahlung

� Example in X-ray generators:
� 1.5418Å (8KeV) X-rays are produced in great 

quantity when we shoot fast electrons at a 
copper target

� BUT: we also get a lot of radiative transfer of 
energy from the electrons as the move past the 
copper atoms. This gives rise to 
Bremsstrahlung, which has no characteristic 
energies.

� Thus the spectrum is like this:

PHYS561 03 22/33

Output X-ray Spectrum of a 
Copper Target
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Energy Transfer
� Compton Processes in Tissue
� Charged Particles and Matter
� Final Steps in Energy Absorption
� Dose and Kerma:  A Review
� Neutron Interactions with matter
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Compton Processes in Tissue

Biological soft tissue is predominantly 
made up of H, C, N, O, and a little P and S.  
So attenuation of photons is dominated by 
those light elements (Z ≤ 16)
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Interaction of Charged 
Particles with Matter

See pages 84 & 85 in the text-
Provides solutions to the dynamical equations 
describing motion of a heavy charged particle 
past a stationary electron or (by relativity) 
motion of an electron past a stationary heavy 
particle: F = kze2/r2 along line MQ
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Interaction of e- With 
Heavy Charged Particle

� Momentum imparted to
electron associated with force:

ro = ke2

moc
2

F = kqMqe

r 2 = kze ⋅ e
r2

  

r p =
r 
F 

−∞

∞

∫ dt

py = Fydt
−∞

∞

∫ = zke2 cosθdt
−∞

∞

∫ =
2zromoc2

vb

classical coherent

non relativistic
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∆p( )2

2mo

=
z 2ro
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4M

b2E
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1
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 
  

 
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Dose and Kerma
See Fig. 5.5 in text.
Because secondary events extend farther into 
tissue (or other) than the initial deposited 
radiation, dose extends farther into the interior 
than kerma.
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Neutrons:  Elastic Scatter
Important up to ~14 MeV range

( ) θ
+

= 2
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∫

E T =
En ⋅ 2MN MA

MN + MA( )2

average over angles:

Energy imparted 
to nucleus:
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Inelastic Scatter
Increasingly important at higher neutron 
energies



17

PHYS561 03 33/33

Neutrons:  Other Mechanisms
(III)  Nonelastic (75 MeV)

12C + n → 9Be + α => KE ~1.75 MeV
(IV)  Neutron Capture
14N + n → 14C + p
1H + n → 2H + γ 2.2 MeV
(V)  Spallation:  Nucleus fragments!
Need very high-energy neutrons ( > 100 MeV)


