Today’s Outline - November 19, 2012

- Problem 5.7
- Exchange Forces
- Helium
- Multi-electron atoms

Homework Assignment #12:
Chapter 5: 6, 9, 12, 13, 32, 33
due Wednesday, November 28, 2012
• Problem 5.7
Today’s Outline - November 19, 2012

• Problem 5.7
• Exchange Forces
Today’s Outline - November 19, 2012

- Problem 5.7
- Exchange Forces
- Helium

Homework Assignment #12:
Chapter 5: 6, 9, 12, 13, 32, 33
due Wednesday, November 28, 2012
Today’s Outline - November 19, 2012

- Problem 5.7
- Exchange Forces
- Helium
- Multi-electron atoms
Today’s Outline - November 19, 2012

- Problem 5.7
- Exchange Forces
- Helium
- Multi-electron atoms

Homework Assignment #12:
Chapter 5: 6,9,12,13,32,33
due Wednesday, November 28, 2012
Problem 5.7

Suppose you had three particles, each of mass m, one in state $\psi_a(x)$, one in state $\psi_b(x)$, and one in state $\psi_c(x)$. Assuming that the three states are orthonormal, construct the three particle states representing distinguishable particles, identical bosons, and identical fermions.
Problem 5.7

Suppose you had three particles, each of mass m, one in state $\psi_a(x)$, one in state $\psi_b(x)$, and one in state $\psi_c(x)$. Assuming that the three states are orthonormal, construct the three particle states representing distinguishable particles, identical bosons, and identical fermions.

distinguishable particles
Problem 5.7

Suppose you had three particles, each of mass m, one in state $\psi_a(x)$, one in state $\psi_b(x)$, and one in state $\psi_c(x)$. Assuming that the three states are orthonormal, construct the three particle states representing distinguishable particles, identical bosons, and identical fermions.

distinguishable particles

This is the simplest case since we need no special symmetry
Problem 5.7

Suppose you had three particles, each of mass m, one in state $\psi_a(x)$, one in state $\psi_b(x)$, and one in state $\psi_c(x)$. Assuming that the three states are orthonormal, construct the three particle states representing distinguishable particles, identical bosons, and identical fermions.

distinguishable particles

This is the simplest case since we need no special symmetry

$$\psi(x_1, x_2, x_3) = \psi_a(x_1)\psi_b(x_2)\psi_c(x_3)$$
Problem 5.7

Suppose you had three particles, each of mass m, one in state $\psi_a(x)$, one in state $\psi_b(x)$, and one in state $\psi_c(x)$. Assuming that the three states are orthonormal, construct the three particle states representing distinguishable particles, identical bosons, and identical fermions.

distinguishable particles

This is the simplest case since we need no special symmetry

$$\psi(x_1, x_2, x_3) = \psi_a(x_1)\psi_b(x_2)\psi_c(x_3)$$

identical bosons
Problem 5.7

Suppose you had three particles, each of mass \(m \), one in state \(\psi_a(x) \), one in state \(\psi_b(x) \), and one in state \(\psi_c(x) \). Assuming that the three states are orthonormal, construct the three particle states representing distinguishable particles, identical bosons, and identical fermions.

distinguishable particles

This is the simplest case since we need no special symmetry

\[
\psi(x_1, x_2, x_3) = \psi_a(x_1) \psi_b(x_2) \psi_c(x_3)
\]

identical bosons

In this case, we need a symmetric wavefunction under exchange of any two particles. We can build this by systematically.
Problem 5.7

Suppose you had three particles, each of mass \(m \), one in state \(\psi_a(x) \), one in state \(\psi_b(x) \), and one in state \(\psi_c(x) \). Assuming that the three states are orthonormal, construct the three particle states representing distinguishable particles, identical bosons, and identical fermions.

distinguishable particles

This is the simplest case since we need no special symmetry

\[
\psi(x_1, x_2, x_3) = \psi_a(x_1)\psi_b(x_2)\psi_c(x_3)
\]

identical bosons

In this case, we need a symmetric wavefunction under exchange of any two particles. We can build this by systematically.

\[
\psi(x_1, x_2, x_3) =
\]
Problem 5.7

Suppose you had three particles, each of mass \(m \), one in state \(\psi_a(x) \), one in state \(\psi_b(x) \), and one in state \(\psi_c(x) \). Assuming that the three states are orthonormal, construct the three particle states representing distinguishable particles, identical bosons, and identical fermions.

distinguishable particles

This is the simplest case since we need no special symmetry

\[
\psi(x_1, x_2, x_3) = \psi_a(x_1)\psi_b(x_2)\psi_c(x_3)
\]

identical bosons

In this case, we need a symmetric wavefunction under exchange of any two particles. We can build this by systematically.

\[
\psi(x_1, x_2, x_3) = \left[\right]
\]
Problem 5.7

Suppose you had three particles, each of mass m, one in state $\psi_a(x)$, one in state $\psi_b(x)$, and one in state $\psi_c(x)$. Assuming that the three states are orthonormal, construct the three particle states representing distinguishable particles, identical bosons, and identical fermions.

distinguishable particles

This is the simplest case since we need no special symmetry

$$\psi(x_1, x_2, x_3) = \psi_a(x_1)\psi_b(x_2)\psi_c(x_3)$$

identical bosons

In this case, we need a symmetric wavefunction under exchange of any two particles. We can build this by systematically.

$$\psi(x_1, x_2, x_3) = \left[\psi_a(x_1)\psi_b(x_2)\psi_c(x_3) + \psi_a(x_1)\psi_c(x_2)\psi_b(x_3) \right]$$
Problem 5.7

Suppose you had three particles, each of mass m, one in state $\psi_a(x)$, one in state $\psi_b(x)$, and one in state $\psi_c(x)$. Assuming that the three states are orthonormal, construct the three particle states representing distinguishable particles, identical bosons, and identical fermions.

distinguishable particles

This is the simplest case since we need no special symmetry

$$\psi(x_1, x_2, x_3) = \psi_a(x_1)\psi_b(x_2)\psi_c(x_3)$$

identical bosons

In this case, we need a symmetric wavefunction under exchange of any two particles. We can build this by systematically.

$$\psi(x_1, x_2, x_3) = [\psi_a(x_1)\psi_b(x_2)\psi_c(x_3) + \psi_a(x_1)\psi_c(x_2)\psi_b(x_3) \\
+ \psi_b(x_1)\psi_c(x_2)\psi_a(x_3) + \psi_b(x_1)\psi_a(x_2)\psi_c(x_3)]$$
Problem 5.7

Suppose you had three particles, each of mass m, one in state $\psi_a(x)$, one in state $\psi_b(x)$, and one in state $\psi_c(x)$. Assuming that the three states are orthonormal, construct the three particle states representing distinguishable particles, identical bosons, and identical fermions.

distinguishable particles

This is the simplest case since we need no special symmetry

$$\psi(x_1, x_2, x_3) = \psi_a(x_1)\psi_b(x_2)\psi_c(x_3)$$

identical bosons

In this case, we need a symmetric wavefunction under exchange of any two particles. We can build this by systematically.

$$\psi(x_1, x_2, x_3) = \begin{bmatrix} \psi_a(x_1)\psi_b(x_2)\psi_c(x_3) + \psi_a(x_1)\psi_c(x_2)\psi_b(x_3) \\
+ \psi_b(x_1)\psi_c(x_2)\psi_a(x_3) + \psi_b(x_1)\psi_a(x_2)\psi_c(x_3) \\
+ \psi_c(x_1)\psi_a(x_2)\psi_b(x_3) + \psi_c(x_1)\psi_b(x_2)\psi_a(x_3) \end{bmatrix}$$
Problem 5.7

Suppose you had three particles, each of mass \(m \), one in state \(\psi_a(x) \), one in state \(\psi_b(x) \), and one in state \(\psi_c(x) \). Assuming that the three states are orthonormal, construct the three particle states representing distinguishable particles, identical bosons, and identical fermions.

distinguishable particles

This is the simplest case since we need no special symmetry

\[
\psi(x_1, x_2, x_3) = \psi_a(x_1)\psi_b(x_2)\psi_c(x_3)
\]

identical bosons

In this case, we need a symmetric wavefunction under exchange of any two particles. We can build this by systematically.

\[
\psi(x_1, x_2, x_3) = \sqrt{1/6} \left[\psi_a(x_1)\psi_b(x_2)\psi_c(x_3) + \psi_a(x_1)\psi_c(x_2)\psi_b(x_3) + \psi_b(x_1)\psi_c(x_2)\psi_a(x_3) + \psi_b(x_1)\psi_a(x_2)\psi_c(x_3) + \psi_c(x_1)\psi_a(x_2)\psi_b(x_3) + \psi_c(x_1)\psi_b(x_2)\psi_a(x_3) \right]
\]
identical fermions
identical fermions

This wavefunction needs to be antisymmetric under two particle exchange. This can be hard to do by hand but fortunately, there is a systematic way of generating these wavefunctions called **Slater determinants**.
Problem 5.7 (cont.)

identical fermions

This wavefunction needs to be antisymmetric under two particle exchange. This can be hard to do by hand but fortunately, there is a systematic way of generating these wavefunctions called **Slater determinants**.

\[
\psi(x_1, x_2, x_3) = \sqrt{\frac{1}{6}} \left\{ \psi_a(x_1)\psi_b(x_2)\psi_c(x_3) - \psi_a(x_1)\psi_c(x_2)\psi_b(x_3) - \psi_b(x_1)\psi_a(x_2)\psi_c(x_3) + \psi_b(x_1)\psi_c(x_2)\psi_a(x_3) + \psi_c(x_1)\psi_a(x_2)\psi_b(x_3) - \psi_c(x_1)\psi_b(x_2)\psi_a(x_3) \right\}
\]
identical fermions

This wavefunction needs to be antisymmetric under two particle exchange. This can be hard to do by hand but fortunately, there is a systematic way of generating these wavefunctions called **Slater determinants**.

\[
\psi(x_1, x_2, x_3) = \begin{vmatrix}
\psi_a(x_1) & \psi_b(x_1) & \psi_c(x_1) \\
\psi_a(x_2) & \psi_b(x_2) & \psi_c(x_2) \\
\psi_a(x_3) & \psi_b(x_3) & \psi_c(x_3)
\end{vmatrix} = \sqrt{\frac{1}{6}} \left\{ \psi_a(x_1)\psi_b(x_2)\psi_c(x_3) - \psi_a(x_1)\psi_c(x_2)\psi_b(x_3) + \psi_b(x_1)\psi_a(x_2)\psi_c(x_3) - \psi_b(x_1)\psi_c(x_2)\psi_a(x_3) + \psi_c(x_1)\psi_a(x_2)\psi_b(x_3) - \psi_c(x_1)\psi_b(x_2)\psi_a(x_3) \right\}
\]
identical fermions

This wavefunction needs to be antisymmetric under two particle exchange. This can be hard to do by hand but fortunately, there is a systematic way of generating these wavefunctions called **Slater determinants**.

\[
\psi(x_1, x_2, x_3) = \det \begin{vmatrix} \psi_a(x_1) & \psi_b(x_1) & \psi_c(x_1) \\ \psi_a(x_2) & \psi_b(x_2) & \psi_c(x_2) \\ \psi_a(x_3) & \psi_b(x_3) & \psi_c(x_3) \end{vmatrix} = \sqrt{\frac{1}{6}} \{ \psi_a(x_1)[\psi_b(x_2)\psi_c(x_3) - \psi_c(x_2)\psi_b(x_3)] - \psi_b(x_1)[\psi_a(x_2)\psi_c(x_3) - \psi_c(x_2)\psi_a(x_3)] + \psi_c(x_1)[\psi_a(x_2)\psi_b(x_3) - \psi_b(x_2)\psi_a(x_3)] \}.
\]
identical fermions

This wavefunction needs to be antisymmetric under two particle exchange. This can be hard to do by hand but fortunately, there is a systematic way of generating these wavefunctions called **Slater determinants**.

\[
\psi(x_1, x_2, x_3) = \det \begin{vmatrix}
\psi_a(x_1) & \psi_b(x_1) & \psi_c(x_1) \\
\psi_a(x_2) & \psi_b(x_2) & \psi_c(x_2)
\end{vmatrix}
\]
identical fermions

This wavefunction needs to be antisymmetric under two particle exchange. This can be hard to do by hand but fortunately, there is a systematic way of generating these wavefunctions called **Slater determinants**.

\[
\psi(x_1, x_2, x_3) = \text{det} \begin{vmatrix}
\psi_a(x_1) & \psi_b(x_1) & \psi_c(x_1) \\
\psi_a(x_2) & \psi_b(x_2) & \psi_c(x_2) \\
\psi_a(x_3) & \psi_b(x_3) & \psi_c(x_3)
\end{vmatrix}
\]
identical fermions

This wavefunction needs to be antisymmetric under two particle exchange. This can be hard to do by hand but fortunately, there is a systematic way of generating these wavefunctions called **Slater determinants**.

\[
\psi(x_1, x_2, x_3) = \det \begin{vmatrix}
\psi_a(x_1) & \psi_b(x_1) & \psi_c(x_1) \\
\psi_a(x_2) & \psi_b(x_2) & \psi_c(x_2) \\
\psi_a(x_3) & \psi_b(x_3) & \psi_c(x_3)
\end{vmatrix} = \sqrt{\frac{1}{6}} \left\{ \right.
\]

\[
\left. \right.
\]
identical fermions

This wavefunction needs to be antisymmetric under two particle exchange. This can be hard to do by hand but fortunately, there is a systematic way of generating these wavefunctions called **Slater determinants**.

\[
\psi(x_1, x_2, x_3) = \text{det} \begin{vmatrix} \psi_a(x_1) & \psi_b(x_1) & \psi_c(x_1) \\ \psi_a(x_2) & \psi_b(x_2) & \psi_c(x_2) \\ \psi_a(x_3) & \psi_b(x_3) & \psi_c(x_3) \end{vmatrix}
\]

\[
= \sqrt{\frac{1}{6}} \left\{ \psi_a(x_1) \left[\psi_b(x_2) \psi_c(x_3) \right. - \left. \psi_c(x_2) \psi_b(x_3) \right] \right\}
\]
identical fermions

This wavefunction needs to be antisymmetric under two-particle exchange. This can be hard to do by hand but fortunately, there is a systematic way of generating these wavefunctions called \textbf{Slater determinants}.

\[
\psi(x_1, x_2, x_3) = \det \begin{vmatrix}
\psi_a(x_1) & \psi_b(x_1) & \psi_c(x_1) \\
\psi_a(x_2) & \psi_b(x_2) & \psi_c(x_2) \\
\psi_a(x_3) & \psi_b(x_3) & \psi_c(x_3)
\end{vmatrix}
= \sqrt{\frac{1}{6}} \left\{ \psi_a(x_1)[\psi_b(x_2)\psi_c(x_3) - \psi_c(x_2)\psi_b(x_3)] \\
- \psi_b(x_1)[\psi_a(x_2)\psi_c(x_3) - \psi_c(x_2)\psi_a(x_3)] \\
+ \psi_c(x_1)[\psi_a(x_2)\psi_b(x_3) - \psi_b(x_2)\psi_a(x_3)] \right\}
\]
identical fermions

This wavefunction needs to be antisymmetric under two particle exchange. This can be hard to do by hand but fortunately, there is a systematic way of generating these wavefunctions called **Slater determinants**.

\[
\psi(x_1, x_2, x_3) = \det \begin{vmatrix}
\psi_a(x_1) & \psi_b(x_1) & \psi_c(x_1) \\
\psi_a(x_2) & \psi_b(x_2) & \psi_c(x_2) \\
\psi_a(x_3) & \psi_b(x_3) & \psi_c(x_3)
\end{vmatrix}
\]

\[
= \sqrt{\frac{1}{6}} \left\{ \psi_a(x_1)[\psi_b(x_2)\psi_c(x_3) - \psi_c(x_2)\psi_b(x_3)] \\
- \psi_b(x_1)[\psi_a(x_2)\psi_c(x_3) - \psi_c(x_2)\psi_a(x_3)] \\
+ \psi_c(x_1)[\psi_a(x_2)\psi_b(x_3) - \psi_b(x_2)\psi_a(x_3)] \right\}
\]
Problem 5.7 (cont.)

identical fermions

This wavefunction needs to be antisymmetric under two particle exchange. This can be hard to do by hand but fortunately, there is a systematic way of generating these wavefunctions called **Slater determinants**.

\[
\psi(x_1, x_2, x_3) = \det \begin{vmatrix}
\psi_a(x_1) & \psi_b(x_1) & \psi_c(x_1) \\
\psi_a(x_2) & \psi_b(x_2) & \psi_c(x_2) \\
\psi_a(x_3) & \psi_b(x_3) & \psi_c(x_3)
\end{vmatrix}
\]

\[
= \sqrt{\frac{1}{6}} \left\{ \psi_a(x_1) [\psi_b(x_2) \psi_c(x_3) - \psi_c(x_2) \psi_b(x_3)] \\
- \psi_b(x_1) [\psi_a(x_2) \psi_c(x_3) - \psi_c(x_2) \psi_a(x_3)] \\
+ \psi_c(x_1) [\psi_a(x_2) \psi_b(x_3) - \psi_b(x_2) \psi_a(x_3)] \right\}
\]

\[
= \sqrt{\frac{1}{6}} \left\{ \right\}
\]
identical fermions

This wavefunction needs to be antisymmetric under two particle exchange. This can be hard to do by hand but fortunately, there is a systematic way of generating these wavefunctions called **Slater determinants**.

\[
\psi(x_1, x_2, x_3) = \det \begin{vmatrix}
\psi_a(x_1) & \psi_b(x_1) & \psi_c(x_1) \\
\psi_a(x_2) & \psi_b(x_2) & \psi_c(x_2) \\
\psi_a(x_3) & \psi_b(x_3) & \psi_c(x_3)
\end{vmatrix}
\]

\[
= \sqrt{1/6} \{ \psi_a(x_1) [\psi_b(x_2) \psi_c(x_3) - \psi_c(x_2) \psi_b(x_3)] \\
- \psi_b(x_1) [\psi_a(x_2) \psi_c(x_3) - \psi_c(x_2) \psi_a(x_3)] \\
+ \psi_c(x_1) [\psi_a(x_2) \psi_b(x_3) - \psi_b(x_2) \psi_a(x_3)] \} \\
= \sqrt{1/6} \{ \psi_a(x_1) \psi_b(x_2) \psi_c(x_3) - \psi_a(x_1) \psi_c(x_2) \psi_b(x_3) \}
\]
identical fermions

This wavefunction needs to be antisymmetric under two particle exchange. This can be hard to do by hand but fortunately, there is a systematic way of generating these wavefunctions called **Slater determinants**.

\[
\psi(x_1, x_2, x_3) = \det \begin{vmatrix}
\psi_a(x_1) & \psi_b(x_1) & \psi_c(x_1) \\
\psi_a(x_2) & \psi_b(x_2) & \psi_c(x_2) \\
\psi_a(x_3) & \psi_b(x_3) & \psi_c(x_3)
\end{vmatrix}
\]

\[
= \sqrt{\frac{1}{6}} \left\{ \psi_a(x_1)[\psi_b(x_2)\psi_c(x_3) - \psi_c(x_2)\psi_b(x_3)] \\
- \psi_b(x_1)[\psi_a(x_2)\psi_c(x_3) - \psi_c(x_2)\psi_a(x_3)] \\
+ \psi_c(x_1)[\psi_a(x_2)\psi_b(x_3) - \psi_b(x_2)\psi_a(x_3)] \right\}
\]

\[
= \sqrt{\frac{1}{6}} \left\{ \psi_a(x_1)\psi_b(x_2)\psi_c(x_3) - \psi_a(x_1)\psi_c(x_2)\psi_b(x_3) \\
- \psi_b(x_1)\psi_a(x_2)\psi_c(x_3) + \psi_b(x_1)\psi_c(x_2)\psi_a(x_3) \right\}
\]
identical fermions

This wavefunction needs to be antisymmetric under two particle exchange. This can be hard to do by hand but fortunately, there is a systematic way of generating these wavefunctions called **Slater determinants**.

\[\psi(x_1, x_2, x_3) = \det \begin{vmatrix} \psi_a(x_1) & \psi_b(x_1) & \psi_c(x_1) \\ \psi_a(x_2) & \psi_b(x_2) & \psi_c(x_2) \\ \psi_a(x_3) & \psi_b(x_3) & \psi_c(x_3) \end{vmatrix} \]

\[= \sqrt{\frac{1}{6}} \left\{ \psi_a(x_1)[\psi_b(x_2)\psi_c(x_3) - \psi_c(x_2)\psi_b(x_3)] \right. \\
\left. - \psi_b(x_1)[\psi_a(x_2)\psi_c(x_3) - \psi_c(x_2)\psi_a(x_3)] \\
+ \psi_c(x_1)[\psi_a(x_2)\psi_b(x_3) - \psi_b(x_2)\psi_a(x_3)] \right\} \]

\[= \sqrt{\frac{1}{6}} \left\{ \psi_a(x_1)\psi_b(x_2)\psi_c(x_3) - \psi_a(x_1)\psi_c(x_2)\psi_b(x_3) \\
- \psi_b(x_1)\psi_a(x_2)\psi_c(x_3) + \psi_b(x_1)\psi_c(x_2)\psi_a(x_3) \\
+ \psi_c(x_1)\psi_a(x_2)\psi_b(x_3) - \psi_c(x_1)\psi_b(x_2)\psi_a(x_3) \right\} \]