A short review of modern physics

• Black-body radiation
• Photoelectric effect
• Compton scattering
• Davisson-Germer experiment
A short review of modern physics

• Black-body radiation
A short review of modern physics

• Black-body radiation
• Photoelectric effect
A short review of modern physics

- Black-body radiation
- Photoelectric effect
- Compton scattering
A short review of modern physics

- Black-body radiation
- Photoelectric effect
- Compton scattering
- Davisson-Germer experiment
Black body radiation

The radiation spectrum of a black-body depends on the temperature of the object.
Black body radiation

The radiation spectrum of a black-body depends on the temperature of the object.

For example, \(T=5000 \text{ K} \).
Black body radiation

The radiation spectrum of a black-body depends on the temperature of the object.

For example, \(T = 5000 \text{ K} \).

The wavelength of the spectrum maximum \(\lambda_m \) scales inversely with temperature such that

\[
\lambda_m \propto \frac{1}{T} = \frac{2.898 \times 10^{-3}}{K^{3/2}}
\]

This proves to be a universal curve. However, the classical theoretical model (Rayleigh–Jeans) is unable to describe the low wavelength cutoff observed.

\[
\int_0^\infty u(\lambda) \, d\lambda \propto \int_0^\infty \lambda^{-4} \, d\lambda \to \infty
\]
Black body radiation

The radiation spectrum of a black-body depends on the temperature of the object.

For example, \(T = 5000 \text{ K} \).

The wavelength of the spectrum maximum \(\lambda_m \) scales inversely with temperature such that

\[
\lambda_m T = 2.898 \times 10^{-3} \text{ m} \cdot \text{K}^3
\]

This proves to be a universal curve. However, the classical theoretical model (Rayleigh–Jeans), is unable to describe the low wavelength cutoff observed.
Black body radiation

The radiation spectrum of a black-body depends on the temperature of the object.

For example, $T=5000$ K.

The wavelength of the spectrum maximum λ_m scales inversely with temperature such that

$$\lambda_m T = 2.898 \times 10^{-3} \text{ m} \cdot \text{K}^3$$

This proves to be a universal curve. However, the classical theoretical model (Rayleigh–Jeans), is unable to describe the low wavelength cutoff observed.

![Graph showing the radiation spectrum of a black body for different temperatures. The x-axis represents wavelength in micrometers, and the y-axis represents intensity in arbitrary units. The graph shows three curves for $T=5000$, 4000, and 3000 K, illustrating the decrease in intensity as the wavelength increases.](image-url)
Black body radiation

The radiation spectrum of a black-body depends on the temperature of the object.

For example, $T=5000$ K.

The wavelength of the spectrum maximum λ_m scales inversely with temperature such that

$$\lambda_m T = 2.898 \times 10^{-3} \text{m} \cdot \text{K}^3$$

This proves to be a universal curve.
Black body radiation

The radiation spectrum of a black-body depends on the temperature of the object.

For example, $T=5000$ K.

The wavelength of the spectrum maximum λ_m scales inversely with temperature such that $\lambda_m T = 2.898 \times 10^{-3} \text{ m} \cdot \text{K}^3$

This proves to be a universal curve.

However, the classical theoretical model (Rayleigh–Jeans), is unable to describe the low wavelength cutoff observed.
Black body radiation

The radiation spectrum of a black-body depends on the temperature of the object.

For example, $T = 5000$ K.

The wavelength of the spectrum maximum λ_m scales inversely with temperature such that

$$\lambda_m T = 2.898 \times 10^{-3} \text{m} \cdot \text{K}^3$$

This proves to be a universal curve.

However, the classical theoretical model (Rayleigh–Jeans), is unable to describe the low wavelength cutoff observed.

$$\int_0^\infty u(\lambda) d\lambda \propto \int_0^\infty \lambda^{-4} d\lambda \rightarrow \infty$$
Planck’s solution

Consider a metallic cavity that forces the electric field of light waves to be zero at the inside surfaces.
Planck’s solution

Consider a metallic cavity that forces the electric field of light waves to be zero at the inside surfaces. The only electromagnetic wave modes supported in the cavity are those where the box dimension is a multiple of the wavelength. If each of these “photon” states is populated according to Boltzmann’s Law, the ultraviolet catastrophe is solved.

The resulting function for the energy distribution is

$$u(λ) \propto λ^{−5} e^{hc/λkT}$$

$$\lim_{λ \to 0} u(λ) = e^{hc/λkT}λ^{−5}$$

$$E_m = mhν, \quad m = 0, 1, 2, 3, \ldots$$
Planck’s solution

Consider a metallic cavity that forces the electric field of light waves to be zero at the inside surfaces. The only electromagnetic wave modes supported in the cavity are those where the box dimension is a multiple of the wavelength. This leads to the postulate of quantization of the modes of oscillation in the black-body cavity.
Planck’s solution

Consider a metallic cavity that forces the electric field of light waves to be zero at the inside surfaces.

The only electromagnetic wave modes supported in the cavity are those where the box dimension is a multiple of the wavelength.

This leads to the postulate of quantization of the modes of oscillation in the black-body cavity.

\[E_m = m h \nu, \quad m = 0, 1, 2, 3, \ldots \]
Planck’s solution

Consider a metallic cavity that forces the electric field of light waves to be zero at the inside surfaces.

The only electromagnetic wave modes supported in the cavity are those where the box dimension is a multiple of the wavelength.

This leads to the postulate of quantization of the modes of oscillation in the black-body cavity.

If each of these “photon” states is populated according to Boltzmann’s Law, the ultraviolet catastrophe is solved.

\[E_m = mh\nu, \quad m = 0, 1, 2, 3, \ldots \]
Planck’s solution

Consider a metallic cavity that forces the electric field of light waves to be zero at the inside surfaces. The only electromagnetic wave modes supported in the cavity are those where the box dimension is a multiple of the wavelength. This leads to the postulate of quantization of the modes of oscillation in the black-body cavity. If each of these “photon” states is populated according to Boltzmann’s Law, the ultraviolet catastrophe is solved.

The resulting function for the energy distribution is

\[E_m = m \hbar \nu, \quad m = 0, 1, 2, 3, \ldots \]
Planck’s solution

Consider a metallic cavity that forces the electric field of light waves to be zero at the inside surfaces. The only electromagnetic wave modes supported in the cavity are those where the box dimension is a multiple of the wavelength. This leads to the postulate of quantization of the modes of oscillation in the black-body cavity. If each of these “photon” states is populated according to Boltzmann’s Law, the ultraviolet catastrophe is solved.

The resulting function for the energy distribution is

\[E_m = m\hbar\nu, \quad m = 0, 1, 2, 3, \ldots \]

\[u(\lambda) \propto \frac{\lambda^{-5}}{e^{hc/\lambda kT} - 1} \]
Planck’s solution

Consider a metallic cavity that forces the electric field of light waves to be zero at the inside surfaces. The only electromagnetic wave modes supported in the cavity are those where the box dimension is a multiple of the wavelength. This leads to the postulate of quantization of the modes of oscillation in the black-body cavity. If each of these “photon” states is populated according to Boltzmann’s Law, the ultraviolet catastrophe is solved. The resulting function for the energy distribution is

\[E_m = m \hbar \nu, \quad m = 0, 1, 2, 3, \ldots \]

\[u(\lambda) \propto \frac{\lambda^{-5}}{e^{hc/\lambda kT} - 1} \]

which cuts off properly as \(\lambda \to 0 \).
Planck’s solution

Consider a metallic cavity that forces the electric field of light waves to be zero at the inside surfaces.

The only electromagnetic wave modes supported in the cavity are those where the box dimension is a multiple of the wavelength.

This leads to the postulate of quantization of the modes of oscillation in the black-body cavity.

If each of these “photon” states is populated according to Boltzmann’s Law, the ultraviolet catastrophe is solved.

The resulting function for the energy distribution is

\[u(\lambda) \propto \frac{\lambda^{-5}}{e^{hc/\lambda kT} - 1} \]

\[\lim_{\lambda \to 0} u(\lambda) = \frac{e^{-hc/\lambda kT}}{\lambda^5} \]

\[E_m = mh\nu, \quad m = 0, 1, 2, 3, \cdots \]
Photoelectric effect

In the photoelectric effect, a bare metal surface is exposed to light whose energy is absorbed, kicking out photo-electrons whose energy is measured by applying a negative potential and measuring the current of photoelectrons.
Photoelectric effect

In the photoelectric effect, a bare metal surface is exposed to light whose energy is absorbed, kicking out photo-electrons whose energy is measured by applying a negative potential and measuring the current of photoelectrons.

Electron emission is found to depend on the color of the incident light rather than its intensity; for long wavelengths, no electrons are emitted.

- **550 nm**
 - Energy: 2.25 eV
 - $v_{\text{max}} = 2.96 \times 10^5 \text{ m/s}$

- **400 nm**
 - Energy: 3.10 eV
 - $v_{\text{max}} = 6.22 \times 10^5 \text{ m/s}$

- **700 nm**
 - Energy: 1.77 eV
 - No electrons
Photoelectric effect

In the photoelectric effect, a bare metal surface is exposed to light whose energy is absorbed, kicking out photo-electrons whose energy is measured by applying a negative potential and measuring the current of photoelectrons. Electron emission is found to depend on the color of the incident light rather than its intensity; for long wavelengths, no electrons are emitted. As the wavelength is reduced, electrons are emitted at a threshold wavelength.

\[
\begin{align*}
550 \text{ nm} & \quad 2.25 \text{ eV} & \quad v_{\text{max}} &= 2.96 \times 10^5 \text{ m/s} \\
400 \text{ nm} & \quad 3.10 \text{ eV} & \quad v_{\text{max}} &= 6.22 \times 10^5 \text{ m/s} \\
700 \text{ nm} & \quad 1.77 \text{ eV} & \quad \text{no electrons}
\end{align*}
\]
In the photoelectric effect, a bare metal surface is exposed to light whose energy is absorbed, kicking out photoelectrons whose energy is measured by applying a negative potential and measuring the current of photoelectrons.

Electron emission is found to depend on the color of the incident light rather than its intensity; for long wavelengths, no electrons are emitted.

As the wavelength is reduced, electrons are emitted at a threshold wavelength.

The maximum velocity of the emitted electrons measured by the stopping potential increases.
Einstein (1905) explained this by reasoning that light must be quantized according to its frequency, thereby acting as a particle. The threshold wavelength is directly related to the work function, ϕ

\[\nu_{\text{thresh}} = \frac{\phi}{h} \]

The maximum electron velocity, v_{max}, is a function of the work function and the energy of the incident photons.

\[\frac{1}{2}mv_{\text{max}}^2 = h\nu - \phi \]

The intensity of the light, not the energy of the photon, determines how many electrons are emitted.

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>Energy (eV)</th>
<th>Velocity (v_{max})</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>3.10</td>
<td>2.96×10^5 m/s</td>
</tr>
<tr>
<td>550</td>
<td>2.25</td>
<td>6.22×10^5 m/s</td>
</tr>
<tr>
<td>700</td>
<td>1.77</td>
<td>no electrons</td>
</tr>
</tbody>
</table>
Photoelectric effect

Einstein (1905) explained this by reasoning that light must be quantized according to its frequency, thereby acting as a particle.

the threshold wavelength is directly related to the work function, ϕ, of the metal

$$\nu_{thresh} = \frac{\phi}{h}$$

ν_{thresh} is the threshold frequency, ϕ is the work function, and h is Plank's constant.

Example Calculations

- **400 nm (3.10 eV)**
 - $v_{max} = 6.22 \times 10^5 \text{ m/s}$
 - Maximum electron velocity

- **550 nm (2.25 eV)**
 - $v_{max} = 2.96 \times 10^5 \text{ m/s}$
 - Maximum electron velocity

- **700 nm (1.77 eV)**
 - No electrons emitted
Photoelectric effect

Einstein (1905) explained this by reasoning that light must be quantized according to its frequency, thereby acting as a particle.

The threshold wavelength is directly related to the work function, ϕ, of the metal:

$$ \nu_{\text{thresh}} = \frac{\phi}{h} $$

The maximum electron velocity, v_{max}, is a function of the work function and the energy of the incident photons:

$$ v_{\text{max}} = \sqrt{\frac{h \nu - \phi}{m}} $$

The intensity of the light, not the energy of the photon, determines how many electrons are emitted.

- **400 nm, 3.10 eV**: $v_{\text{max}} = 2.96 \times 10^5 \text{ m/s}$
- **550 nm, 2.25 eV**: $v_{\text{max}} = 6.22 \times 10^5 \text{ m/s}$
- **700 nm, 1.77 eV**: No electrons emitted
Einstein (1905) explained this by reasoning that light must be quantized according to its frequency, thereby acting as a particle

the threshold wavelength is directly related to the work function, ϕ, of the metal

$$\nu_{\text{thresh}} = \frac{\phi}{h}$$

the maximum electron velocity, v_{max}, is a function of the work function and the energy of the incident photons

$$\frac{1}{2}mv_{\text{max}}^2 = h\nu - \phi$$
Photoelectric effect

Einstein (1905) explained this by reasoning that light must be quantized according to its frequency, thereby acting as a particle.

the threshold wavelength is directly related to the work function, \(\phi \), of the metal

\[
\nu_{\text{thresh}} = \frac{\phi}{h}
\]

the maximum electron velocity, \(v_{\text{max}} \), is a function of the work function and the energy of the incident photons

\[
\frac{1}{2}mv_{\text{max}}^2 = h\nu - \phi
\]

the intensity of the light, not the energy of the photon, determines how many electrons are emitted
In 1923, Arthur Compton measured the scattering of x-rays from a carbon foil as a function of exit angle using a single crystal as an energy analyzer, to measure the x-ray spectrum.
In 1923, Arthur Compton measured the scattering of x-rays from a carbon foil as a function of exit angle using a single crystal as an energy analyzer, to measure the x-ray spectrum in the forward scattering (zero degrees) direction, he observed a single sharp peak centered at the incident x-ray wavelength.
In 1923, Arthur Compton measured the scattering of x-rays from a carbon foil as a function of exit angle using a single crystal as an energy analyzer, to measure the x-ray spectrum in the forward scattering (zero degrees) direction, he observed a single sharp peak centered at the incident x-ray wavelength as the scattering angle was increased, x-rays at longer wavelengths (lower energies) than the incident energy were observed.
Compton scattering experiment

As the angle was further increased, the spectrum showed two peaks, one at the incident wavelength and a broader one at the longer wavelength.
Compton scattering experiment

As the angle was further increased, the spectrum showed two peaks, one at the incident wavelength and a broader one at the longer wavelength.

This data could be explained by treating the x-rays as particles which interact with the electrons in the carbon atoms of the foil through an inelastic collision.
As the angle was further increased, the spectrum showed two peaks, one at the incident wavelength and a broader one at the longer wavelength.

This data could be explained by treating the x-rays as particles which interact with the electrons in the carbon atoms of the foil through an inelastic collision.

The peak wavelength of the Compton scattering peak can be calculated by applying relativistic scattering theory.
Compton scattering phenomenon

A photon-electron collision

\[\vec{p} = \hbar \vec{k} \rightarrow \vec{p}' = 2\pi \hbar \lambda \]

Treat the electron relativistically and conserve energy and momentum

\[mc^2 + hc\lambda = hc\lambda' + \gamma mc^2 \text{(energy)} \]

\[\hbar \lambda = \hbar \lambda' \cos \phi + \gamma mv \cos \theta \text{(x-axis)} \]

\[0 = \hbar \lambda' \sin \phi + \gamma mv \sin \theta \text{(y-axis)} \]
Compton scattering phenomenon

A photon-electron collision

\[\vec{p} = \hbar \vec{k} \rightarrow \vec{p}' = 2\pi \hbar \lambda \]

\[\vec{p}' = \hbar \vec{k}' \rightarrow \vec{p}' = 2\pi \hbar \lambda' \]

Treat the electron relativistically and conserve energy and momentum

\[mc^2 + hc\lambda = hc\lambda' + \gamma mc^2 \] (energy)

\[h\lambda = h\lambda' \cos \phi + \gamma mv \cos \theta \] (x-axis)

\[0 = h\lambda' \sin \phi + \gamma mv \sin \theta \] (y-axis)
Compton scattering phenomenon

A photon-electron collision

\[\vec{p} = \hbar \vec{k} \rightarrow p = \frac{2\pi \hbar}{\lambda} \]

Treat the electron relativistically and conserve energy and momentum

\[mc^2 + hc\lambda = hc\lambda' + \gamma mc^2 \]

\[h\lambda = h\lambda' \cos \phi + \gamma mv \cos \theta \] (x-axis)

\[0 = h\lambda' \sin \phi + \gamma mv \sin \theta \] (y-axis)
Compton scattering phenomenon

A photon-electron collision

\[\vec{p} = \hbar \vec{k} \rightarrow p = \frac{2\pi \hbar}{\lambda} \]

\[\vec{p}' = \hbar \vec{k}' \rightarrow p' = \frac{2\pi \hbar}{\lambda'} \]
Compton scattering phenomenon

A photon-electron collision

\[\vec{p} = \hbar \vec{k} \rightarrow p = \frac{2\pi \hbar}{\lambda} \]

\[\vec{p}' = \hbar \vec{k}' \rightarrow p' = \frac{2\pi \hbar}{\lambda'} \]

\[|\vec{k}| \neq |\vec{k}'| \]
Compton scattering phenomenon

A photon-electron collision

\[\vec{p} = \hbar \vec{k} \rightarrow p = \frac{2\pi \hbar}{\lambda} \]

\[\vec{p}' = \hbar \vec{k}' \rightarrow p' = \frac{2\pi \hbar}{\lambda'} \]

\[|\vec{k}| \neq |\vec{k}'| \]

Treat the electron relativistically and conserve energy and momentum
Compton scattering phenomenon

A photon-electron collision

\[\vec{p} = \hbar \vec{k} \rightarrow p = \frac{2\pi \hbar}{\lambda} \]

\[\vec{p}' = \hbar \vec{k}' \rightarrow p' = \frac{2\pi \hbar}{\lambda'} \]

\[|\vec{k}| \neq |\vec{k}'| \]

Treat the electron relativistically and conserve energy and momentum

\[mc^2 + \frac{hc}{\lambda} = \frac{hc}{\lambda'} + \gamma mc^2 \quad \text{(energy)} \]
Compton scattering phenomenon

A photon-electron collision

\[\vec{p} = \hbar \vec{k} \rightarrow p = \frac{2\pi \hbar}{\lambda} \]

\[\vec{p}' = \hbar \vec{k}' \rightarrow p' = \frac{2\pi \hbar}{\lambda'} \]

\[|\vec{k}| \neq |\vec{k}'| \]

Treat the electron relativistically and conserve energy and momentum

\[mc^2 + \frac{hc}{\lambda} = \frac{hc}{\lambda'} + \gamma mc^2 \quad \text{(energy)} \]

\[\frac{\hbar}{\lambda} = \frac{\hbar}{\lambda'} \cos \varphi + \gamma mv \cos \theta \quad \text{(x-axis)} \]
Compton scattering phenomenon

A photon-electron collision

\[\vec{p} = \hbar \vec{k} \rightarrow p = \frac{2\pi \hbar}{\lambda} \]

\[\vec{p}' = \hbar \vec{k}' \rightarrow p' = \frac{2\pi \hbar}{\lambda'} \]

\[\left| \vec{k} \right| \neq \left| \vec{k}' \right| \]

Treat the electron relativistically and conserve energy and momentum

\[mc^2 + \frac{hc}{\lambda} = \frac{hc}{\lambda'} + \gamma mc^2 \quad \text{(energy)} \]

\[\frac{h}{\lambda} = \frac{h}{\lambda'} \cos \varphi + \gamma mv \cos \theta \quad \text{(x-axis)} \]

\[0 = \frac{h}{\lambda'} \sin \varphi + \gamma mv \sin \theta \quad \text{(y-axis)} \]
Compton scattering derivation

squaring the momentum equations
Compton scattering derivation

squaring the momentum equations

\[
\left(\frac{h}{\lambda} - \frac{h}{\lambda'} \cos \varphi \right)^2 = \gamma^2 m^2 v^2 \cos^2 \theta
\]
Compton scattering derivation

squaring the momentum equations

\[
\left(\frac{h}{\lambda} - \frac{h}{\lambda'} \cos \varphi \right)^2 = \gamma^2 m^2 v^2 \cos^2 \theta \\
\left(-\frac{h}{\lambda'} \sin \varphi \right)^2 = \gamma^2 m^2 v^2 \sin^2 \theta
\]
Compton scattering derivation

squaring the momentum equations

\[\left(\frac{h}{\lambda} - \frac{h}{\lambda'} \cos \varphi \right)^2 = \gamma^2 m^2 v^2 \cos^2 \theta \]
\[\left(-\frac{h}{\lambda'} \sin \varphi \right)^2 = \gamma^2 m^2 v^2 \sin^2 \theta \]

now add them together,

\[\gamma^2 m^2 v^2 \left(\sin^2 \theta + \cos^2 \theta \right) = \left(\frac{h}{\lambda} - \frac{h}{\lambda'} \cos \varphi \right)^2 + \left(-\frac{h}{\lambda'} \sin \varphi \right)^2 \]
Compton scattering derivation

squaring the momentum equations

\[
\left(\frac{h}{\lambda} - \frac{h}{\lambda'} \cos \varphi \right)^2 = \gamma^2 m^2 v^2 \cos^2 \theta
\]
\[
\left(-\frac{h}{\lambda'} \sin \varphi \right)^2 = \gamma^2 m^2 v^2 \sin^2 \theta
\]

now add them together, substitute \(\sin^2 \theta + \cos^2 \theta = 1 \), expand the squares,

\[
\gamma^2 m^2 v^2 \left(\sin^2 \theta + \cos^2 \theta \right) = \left(\frac{h}{\lambda} - \frac{h}{\lambda'} \cos \varphi \right)^2 + \left(-\frac{h}{\lambda'} \sin \varphi \right)^2
\]
\[
\gamma^2 m^2 v^2 = \frac{h^2}{\lambda^2} - \frac{2h^2}{\lambda \lambda'} \cos \varphi + \frac{h^2}{\lambda'^2} \sin^2 \varphi + \frac{h^2}{\lambda'^2} \cos^2 \varphi
\]
Compton scattering derivation

squaring the momentum equations

\[
\left(\frac{h}{\lambda} - \frac{h}{\lambda'} \cos \varphi \right)^2 = \gamma^2 m^2 v^2 \cos^2 \theta \\
\left(-\frac{h}{\lambda'} \sin \varphi \right)^2 = \gamma^2 m^2 v^2 \sin^2 \theta
\]

now add them together, substitute \(\sin^2 \theta + \cos^2 \theta = 1 \), expand the squares, and \(\sin^2 \varphi + \cos^2 \varphi = 1 \), then rearrange

\[
\gamma^2 m^2 v^2 \left(\sin^2 \theta + \cos^2 \theta \right) = \left(\frac{h}{\lambda} - \frac{h}{\lambda'} \cos \varphi \right)^2 + \left(-\frac{h}{\lambda'} \sin \varphi \right)^2 \\
\gamma^2 m^2 v^2 = \frac{h^2}{\lambda^2} - \frac{2h^2}{\lambda\lambda'} \cos \varphi + \frac{h^2}{\lambda'^2} \sin^2 \varphi + \frac{h^2}{\lambda'^2} \cos^2 \varphi \\
m^2 v^2 = \frac{h^2}{\lambda^2} - \frac{2h^2}{\lambda\lambda'} \cos \varphi + \frac{h^2}{\lambda'^2} \\
\frac{1}{1-\beta^2} = \frac{h^2}{\lambda^2} - \frac{2h^2}{\lambda\lambda'} \cos \varphi + \frac{h^2}{\lambda'^2}
\]
Compton scattering derivation

squaring the momentum equations

\[
\left(\frac{h}{\lambda} - \frac{h}{\lambda'} \cos \varphi \right)^2 = \gamma^2 m^2 v^2 \cos^2 \theta \\
\left(-\frac{h}{\lambda'} \sin \varphi \right)^2 = \gamma^2 m^2 v^2 \sin^2 \theta
\]

now add them together, substitute \(\sin^2 \theta + \cos^2 \theta = 1 \), expand the squares, and \(\sin^2 \varphi + \cos^2 \varphi = 1 \), then rearrange and substitute \(v = \beta c \)

\[
\gamma^2 m^2 v^2 (\sin^2 \theta + \cos^2 \theta) = \left(\frac{h}{\lambda} - \frac{h}{\lambda'} \cos \varphi \right)^2 + \left(-\frac{h}{\lambda'} \sin \varphi \right)^2
\]

\[
\gamma^2 m^2 v^2 = \frac{h^2}{\lambda^2} - \frac{2h^2}{\lambda\lambda'} \cos \varphi + \frac{h^2}{\lambda'^2} \sin^2 \varphi + \frac{h^2}{\lambda'^2} \cos^2 \varphi
\]

\[
\frac{m^2 c^2 \beta^2}{1 - \beta^2} = \frac{m^2 v^2}{1 - \beta^2} = \frac{h^2}{\lambda^2} - \frac{2h^2}{\lambda\lambda'} \cos \varphi + \frac{h^2}{\lambda'^2}
\]
Compton scattering derivation (cont.)

Now take the energy equation and square it,

\[
\left(mc^2 + \frac{hc}{\lambda} - \frac{hc}{\lambda'} \right)^2 = \gamma^2 m^2 c^4 = \frac{m^2 c^4}{1 - \beta^2}
\]
Now take the energy equation and square it, then solve it for β^2

\[
\left(mc^2 + \frac{hc}{\lambda} - \frac{hc}{\lambda'} \right)^2 = \gamma^2 m^2 c^4 = \frac{m^2 c^4}{1 - \beta^2}
\]

\[
\beta^2 = 1 - \frac{m^2 c^4}{\left(mc^2 + \frac{hc}{\lambda} - \frac{hc}{\lambda'} \right)^2}
\]
Compton scattering derivation (cont.)

Now take the energy equation and square it, then solve it for β^2 which is substituted into the equation from the momentum.

$$\left(mc^2 + \frac{hc}{\lambda} - \frac{hc}{\lambda'}\right)^2 = \gamma^2 m^2 c^4 = \frac{m^2 c^4}{1 - \beta^2}$$

$$\beta^2 = 1 - \frac{m^2 c^4}{\left(mc^2 + \frac{hc}{\lambda} - \frac{hc}{\lambda'}\right)^2}$$

$$\frac{h^2}{\lambda^2} + \frac{h^2}{\lambda'^2} - 2\frac{h^2}{\lambda \lambda'} \cos \varphi = \frac{m^2 c^2 \beta^2}{1 - \beta^2}$$
Compton scattering derivation (cont.)

Now take the energy equation and square it, then solve it for β^2 which is substituted into the equation from the momentum.

\[
\left(mc^2 + \frac{hc}{\lambda} - \frac{hc}{\lambda'}\right)^2 = \gamma^2 m^2 c^4 = \frac{m^2 c^4}{1 - \beta^2}
\]

\[
\beta^2 = 1 - \frac{m^2 c^4}{(mc^2 + \frac{hc}{\lambda} - \frac{hc}{\lambda'})^2}
\]

\[
\frac{h^2}{\lambda^2} + \frac{h^2}{\lambda'^2} - \frac{2h^2}{\lambda \lambda'} \cos \varphi = \frac{m^2 c^2 \beta^2}{1 - \beta^2}
\]

\[
= \frac{1}{c^2} \left(mc^2 + \frac{hc}{\lambda} - \frac{hc}{\lambda'}\right)^2 - m^2 c^2
\]
After expansion, cancellation, and rearrangement, we obtain:

\[
\frac{h^2}{\lambda^2} + \frac{h^2}{\lambda'^2} - 2\frac{h^2}{\lambda\lambda'} \cos \varphi = \left(mc + \frac{h}{\lambda} - \frac{h}{\lambda'} \right)^2 - m^2 c^2
\]
Compton scattering derivation (cont.)

After expansion,

\[
\frac{h^2}{\lambda^2} + \frac{h^2}{\lambda'^2} - \frac{2h^2}{\lambda \lambda'} \cos \varphi = \left(mc + \frac{h}{\lambda} - \frac{h}{\lambda'} \right)^2 - m^2 c^2
\]

\[= m^2 c^2 + \frac{h^2}{\lambda^2} + \frac{h^2}{\lambda'^2} + \frac{2mch}{\lambda} - \frac{2mch}{\lambda'} + \frac{2h^2}{\lambda \lambda'} - m^2 c^2 \]
Compton scattering derivation (cont.)

After expansion, cancellation, and rearrangement, we obtain

\[
\frac{h^2}{\lambda^2} + \frac{h^2}{\lambda' r^2} - \frac{2h^2}{\lambda \lambda'} \cos \varphi = \left(mc + \frac{h}{\lambda} - \frac{h}{\lambda'} \right)^2 - m^2 c^2
\]

\[
= m^2 c^2 + \frac{h^2}{\lambda^2} + \frac{h^2}{\lambda' r^2} + \frac{2mhc}{\lambda} - \frac{2mhc}{\lambda'} + \frac{2h^2}{\lambda \lambda'} - m^2 c^2
\]

\[
= 2m \left(\frac{hc}{\lambda} - \frac{hc}{\lambda'} \right) + \frac{h^2}{\lambda^2} + \frac{h^2}{\lambda' r^2} - \frac{2h^2}{\lambda \lambda'}
\]
Compton scattering derivation (cont.)

After expansion, cancellation, and rearrangement, we obtain

$$\frac{h^2}{\lambda^2} + \frac{h^2}{\lambda'^2} \cos \varphi = \left(mc + \frac{h}{\lambda} - \frac{h}{\lambda'} \right)^2 - m^2 c^2$$

$$= m^2 c^2 + \frac{h^2}{\lambda^2} + \frac{h^2}{\lambda'^2} + \frac{2mc h}{\lambda} - \frac{2mc h}{\lambda'} + \frac{2h^2}{\lambda \lambda'} - m^2 c^2$$

$$= 2m \left(\frac{hc}{\lambda} - \frac{hc}{\lambda'} \right) + \frac{h^2}{\lambda^2} + \frac{h^2}{\lambda'^2} - \frac{2h^2}{\lambda \lambda'}$$
Compton scattering derivation (cont.)

After expansion, cancellation, and rearrangement, we obtain

\[\frac{h^2}{\lambda^2} + \frac{h^2}{\lambda'^2} - \frac{2h^2}{\lambda\lambda'} \cos \varphi = \left(mc + \frac{h}{\lambda} - \frac{h}{\lambda'} \right)^2 - m^2 c^2 \]

\[= m^2 c^2 + \frac{h^2}{\lambda^2} + \frac{h^2}{\lambda'^2} + \frac{2mch}{\lambda} - \frac{2mch}{\lambda'} + \frac{2h^2}{\lambda\lambda'} - m^2 c^2 \]

\[= 2m \left(\frac{hc}{\lambda} - \frac{hc}{\lambda'} \right) + \frac{h^2}{\lambda^2} + \frac{h^2}{\lambda'^2} - \frac{2h^2}{\lambda\lambda'} \]

\[\frac{2h^2}{\lambda\lambda'} \left(1 - \cos \varphi \right) = 2m \left(\frac{hc}{\lambda} - \frac{hc}{\lambda'} \right) \]
Compton scattering derivation (cont.)

After expansion, cancellation, and rearrangement, we obtain

\[
\frac{\hbar^2}{\lambda^2} + \frac{\hbar^2}{\lambda'^2} - \frac{2\hbar^2}{\lambda\lambda'} \cos \varphi = \left(mc + \frac{h}{\lambda} - \frac{h}{\lambda'} \right)^2 - m^2 c^2
\]

\[
= m^2 c^2 + \frac{\hbar^2}{\lambda^2} + \frac{\hbar^2}{\lambda'^2} + \frac{2mch}{\lambda} - \frac{2mch}{\lambda'} + \frac{2\hbar^2}{\lambda\lambda'} - m^2 c^2
\]

\[
= 2m \left(\frac{hc}{\lambda} - \frac{hc}{\lambda'} \right) + \frac{\hbar^2}{\lambda^2} + \frac{\hbar^2}{\lambda'^2} - \frac{2\hbar^2}{\lambda\lambda'}
\]

\[
\frac{2\hbar^2}{\lambda\lambda'} (1 - \cos \varphi) = 2m \left(\frac{hc}{\lambda} - \frac{hc}{\lambda'} \right) = 2mhc \left(\frac{\lambda' - \lambda}{\lambda\lambda'} \right)
\]
Compton scattering derivation (cont.)

After expansion, cancellation, and rearrangement, we obtain

\[
\frac{h^2}{\lambda^2} + \frac{h^2}{\lambda'^2} - \frac{2h^2}{\lambda \lambda'} \cos \varphi = \left(mc + \frac{h}{\lambda} - \frac{h}{\lambda'} \right)^2 - m^2 c^2
\]

\[
= m^2 c^2 + \frac{h^2}{\lambda^2} + \frac{h^2}{\lambda'^2} + \frac{2mch}{\lambda} - \frac{2mch}{\lambda'} + \frac{2h^2}{\lambda \lambda'} - m^2 c^2
\]

\[
= 2m \left(\frac{hc}{\lambda} - \frac{hc}{\lambda'} \right) + \frac{h^2}{\lambda^2} + \frac{h^2}{\lambda'^2} - \frac{2h^2}{\lambda \lambda'}
\]

\[
\frac{2h^2}{\lambda \lambda'} (1 - \cos \varphi) = 2m \left(\frac{hc}{\lambda} - \frac{hc}{\lambda'} \right) = 2mhc \left(\frac{\lambda' - \lambda}{\lambda \lambda'} \right) = \frac{2mhc \Delta \lambda}{\lambda \lambda'}
\]
Compton scattering derivation (cont.)

After expansion, cancellation, and rearrangement, we obtain

\[
\frac{h^2}{\lambda^2} + \frac{h^2}{\lambda'^2} - \frac{2h^2}{\lambda\lambda'} \cos \varphi = \left(mc + \frac{h}{\lambda} - \frac{h}{\lambda'} \right)^2 - m^2 c^2
\]

\[
= m^2 c^2 + \frac{h^2}{\lambda^2} + \frac{h^2}{\lambda'^2} + \frac{2mch}{\lambda} - \frac{2mch}{\lambda'} + \frac{2h^2}{\lambda\lambda'} - m^2 c^2
\]

\[
= 2m \left(\frac{hc}{\lambda} - \frac{hc}{\lambda'} \right) + \frac{h^2}{\lambda^2} + \frac{h^2}{\lambda'^2} - \frac{2h^2}{\lambda\lambda'}
\]

\[
\frac{2h^2}{\lambda\lambda'} (1 - \cos \varphi) = 2m \left(\frac{hc}{\lambda} - \frac{hc}{\lambda'} \right) = 2mhc \left(\frac{\lambda' - \lambda}{\lambda\lambda'} \right) = \frac{2mhc \Delta \lambda}{\lambda\lambda'}
\]

\[
\Delta \lambda = \frac{h}{mc} (1 - \cos \varphi)
\]
Compton scattering equation

\[\Delta \lambda = \frac{h}{mc} \left(1 - \cos \varphi \right) \]

This explains the change in energy of the broader peak with increasing angle. It also provides the basis for understanding why the Compton peak is so broad... since the electrons are not really “stationary”, there will be a spread in energy and momentum of the outgoing photon.
Compton scattering equation

\[\Delta \lambda = \frac{h}{mc} (1 - \cos \varphi) \]

This explains the change in energy of the broader peak with increasing angle.
Compton scattering equation

\[\Delta \lambda = \frac{h}{mc} (1 - \cos \varphi) \]

This explains the change in energy of the broader peak with increasing angle. It also provides the basis for understanding why the Compton peak is so broad...
Compton scattering equation

\[\Delta \lambda = \frac{h}{mc} (1 - \cos \varphi) \]

This explains the change in energy of the broader peak with increasing angle.

It also provides the basis for understanding why the Compton peak is so broad . . .

. . . since the electrons are not really “stationary”, there will be a spread in energy and momentum of the outgoing photon.
In 1928, Davisson & Germer measured peaks in the reflectivity of electrons from a single crystal of nickel.
In 1928, Davisson & Germer measured peaks in the reflectivity of electrons from a single crystal of nickel. Electrons were accelerated at varying potentials and incident on the nickel surface at a fixed angle, θ with a detector at 2θ from the incident beam.
In 1928, Davisson & Germer measured peaks in the reflectivity of electrons from a single crystal of nickel electrons were accelerated at varying potentials and incident on the nickel surface at a fixed angle, θ with a detector at 2θ from the incident beam the peaks occurring at regular intervals in $V_{\text{accel}}^{1/2}$ corresponded to Bragg reflection of the electrons from the Ni (111) lattice planes
In 1928, Davisson & Germer measured peaks in the reflectivity of electrons from a single crystal of nickel. Electrons were accelerated at varying potentials and incident on the nickel surface at a fixed angle, θ, with a detector at 2θ from the incident beam. The peaks occurring at regular intervals in $V^{1/2}_{\text{accel}}$ corresponded to Bragg reflection of the electrons from the Ni (111) lattice planes:

$$2d \sin \theta = n\lambda$$
This experiment demonstrated that DeBroglie’s hypothesis of the wave nature of particles was correct.
This experiment demonstrated that DeBroglie’s hypothesis of the wave nature of particles was correct

\[p = \frac{h}{\lambda} \rightarrow \frac{1}{\lambda} = \frac{p}{h} \]
This experiment demonstrated that DeBroglie’s hypothesis of the wave nature of particles was correct.

\[p = \frac{h}{\lambda} \rightarrow \frac{1}{\lambda} = \frac{p}{h} \]

\[\frac{1}{\lambda} = \frac{n}{2d \sin \theta} = \frac{\sqrt{2meV_{\text{accel}}}}{h} \]
This experiment demonstrated that DeBroglie’s hypothesis of the wave nature of particles was correct

\[
p = \frac{h}{\lambda} \rightarrow \frac{1}{\lambda} = \frac{p}{h}
\]

\[
\frac{1}{\lambda} = \frac{n}{2d \sin \theta} = \frac{\sqrt{2meV_{\text{accel}}}}{h}
\]

this could only be explained by interference between electrons and the wave nature of these particles
This experiment demonstrated that DeBroglie’s hypothesis of the wave nature of particles was correct:

\[
p = \frac{h}{\lambda} \rightarrow \frac{1}{\lambda} = \frac{p}{h}
\]

\[
\frac{1}{\lambda} = \frac{n}{2d \sin \theta} = \frac{\sqrt{2}meV_{\text{accel}}}{h}
\]

don this could only be explained by interference between electrons and the wave nature of these particles.

The Davisson-Germer paper was published in the Proceedings of the National Academy of Sciences in 1928 and an historical account of the discovery was published in 1978 in Physics Today.
The Schrödinger equation
The Schrödinger equation

- The 1-D Schrödinger equation
The Schrödinger equation

- The 1-D Schrödinger equation
- Deriving the Schrödinger equation
1D Schrödinger equation

\[i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} + V\Psi \]
1D Schrödinger equation

\[i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} + V\Psi \]

where the wave function, \(\Psi(x, t) \) is a function of both time and space.
1D Schrödinger equation

\[i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} + V\Psi \]

where the wave function, \(\Psi(x, t) \) is a function of both time and space.

this equation can be viewed as an expression of conservation of energy.
The 1D Schrödinger equation

\[i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} + V\Psi \]

where the wave function, \(\Psi(x, t) \) is a function of both time and space.

\[i\hbar \frac{\partial \Psi}{\partial t} = \text{Total Energy} \]

this equation can be viewed as an expression of conservation of energy.
1D Schrödinger equation

\[i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} + V\Psi \]

where the wave function, \(\Psi(x, t) \) is a function of both time and space

\[i\hbar \frac{\partial \Psi}{\partial t} = \text{Total Energy} \]

\[-\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} = \text{Kinetic Energy} \]

this equation can be viewed as an expression of conservation of energy
1D Schrödinger equation

\[i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} + V\Psi \]

where the wave function, \(\Psi(x, t) \) is a function of both time and space

\[i\hbar \frac{\partial \Psi}{\partial t} = \text{Total Energy} \]

\[\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} = \text{Kinetic Energy} \]

\[V\Psi = \text{Potential Energy} \]
1D Schrödinger equation

\[i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} + V\Psi \]

where the wave function, \(\Psi(x, t) \) is a function of both time and space

\[i\hbar \frac{\partial \Psi}{\partial t} = \text{Total Energy} \]

\[-\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} = \text{Kinetic Energy} \]

\[V\Psi = \text{Potential Energy} \]

this equation can be viewed as an expression of conservation of energy

Schrödinger’s wave mechanics was not the only formulation of quantum mechanics that was developed in that period
1D Schrödinger equation

\[i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} + V\Psi \]

where the wave function, \(\Psi(x, t) \) is a function of both time and space

\[i\hbar \frac{\partial \Psi}{\partial t} = \text{Total Energy} \]

\[-\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} = \text{Kinetic Energy} \]

\[V\Psi = \text{Potential Energy} \]

this equation can be viewed as an expression of conservation of energy

Schrödinger’s wave mechanics was not the only formulation of quantum mechanics that was developed in that period

matrix mechanics was worked out in parallel by Heisenberg, Born, and Pascual and relativistic approaches were developed by Dirac and Pauli
Deriving the Schrödinger equation

“When Schrödinger first wrote it down, he gave a kind of derivation based on some heuristic arguments and some brilliant intuitive guesses. Some of the arguments he used were even false, but that does not matter; the only important thing is that the ultimate equation gives a correct description of nature.” - Richard Feynman

carlossegre | PHYS 405 - Fundamentals of Quantum Theory I
The Schrödinger Equation
Deriving the Schrödinger equation

“When Schrödinger first wrote it down, he gave a kind of derivation based on some heuristic arguments and some brilliant intuitive guesses. Some of the arguments he used were even false, but that does not matter; the only important thing is that the ultimate equation gives a correct description of nature.” - Richard Feynman

Inspired by wave optics, Schrödinger started with the wave equation for electromagnetic radiation

\[E(x,t) = E_0 e^{i(kx - \omega t)} \]

Taking the derivatives and substituting results in the dispersion relation for photons

\[0 = \frac{\partial^2 E}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 E}{\partial t^2} \]

\[0 = (-k^2 + \omega^2 c^2) E_0 e^{i(kx - \omega t)} \]

\[k \to \omega/c \to E \to pc \]
Deriving the Schrödinger equation

“When Schrödinger first wrote it down, he gave a kind of derivation based on some heuristic arguments and some brilliant intuitive guesses. Some of the arguments he used were even false, but that does not matter; the only important thing is that the ultimate equation gives a correct description of nature.” - Richard Feynman

Inspired by wave optics, Schrödinger started with the wave equation for electromagnetic radiation

\[0 = \frac{\partial^2 E}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 E}{\partial t^2} \]
Deriving the Schrödinger equation

“When Schrödinger first wrote it down, he gave a kind of derivation based on some heuristic arguments and some brilliant intuitive guesses. Some of the arguments he used were even false, but that does not matter; the only important thing is that the ultimate equation gives a correct description of nature.” - Richard Feynman

Inspired by wave optics, Schrödinger started with the wave equation for electromagnetic radiation with solution

\[E(x, t) = E_0 e^{i(kx - \omega t)} \]

\[
0 = \frac{\partial^2 E}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 E}{\partial t^2}
\]
"When Schrödinger first wrote it down, he gave a kind of derivation based on some heuristic arguments and some brilliant intuitive guesses. Some of the arguments he used were even false, but that does not matter; the only important thing is that the ultimate equation gives a correct description of nature." - Richard Feynman

Inspired by wave optics, Schrödinger started with the wave equation for electromagnetic radiation with solution

\[E(x, t) = E_0 e^{i(kx - \omega t)} \]

taking the derivatives and substituting

\[
0 = \frac{\partial^2 E}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 E}{\partial t^2}
\]
Deriving the Schrödinger equation

“When Schrödinger first wrote it down, he gave a kind of derivation based on some heuristic arguments and some brilliant intuitive guesses. Some of the arguments he used were even false, but that does not matter; the only important thing is that the ultimate equation gives a correct description of nature.” - Richard Feynman

Inspired by wave optics, Schrödinger started with the wave equation for electromagnetic radiation with solution

\[E(x, t) = E_0 e^{i(kx - \omega t)} \]

taking the derivatives and substituting

\[0 = \frac{\partial^2 E}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 E}{\partial t^2} \]

\[0 = \left(-k^2 + \frac{\omega^2}{c^2}\right) E_0 e^{i(kx - \omega t)} \]
Deriving the Schrödinger equation

“When Schrödinger first wrote it down, he gave a kind of derivation based on some heuristic arguments and some brilliant intuitive guesses. Some of the arguments he used were even false, but that does not matter; the only important thing is that the ultimate equation gives a correct description of nature.” - Richard Feynman

Inspired by wave optics, Schrödinger started with the wave equation for electromagnetic radiation with solution

$$E(x, t) = E_0 e^{i(kx - \omega t)}$$

taking the derivatives and substituting results in the dispersion relation for photons

$$0 = \frac{\partial^2 E}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 E}{\partial t^2}$$

$$0 = \left(-k^2 + \frac{\omega^2}{c^2} \right) E_0 e^{i(kx - \omega t)}$$
Deriving the Schrödinger equation

“When Schrödinger first wrote it down, he gave a kind of derivation based on some heuristic arguments and some brilliant intuitive guesses. Some of the arguments he used were even false, but that does not matter; the only important thing is that the ultimate equation gives a correct description of nature.” - Richard Feynman

Inspired by wave optics, Schrödinger started with the wave equation for electromagnetic radiation with solution

\[E(x, t) = E_0 e^{i(kx - \omega t)} \]

taking the derivatives and substituting results in the dispersion relation for photons

\[0 = \frac{\partial^2 E}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 E}{\partial t^2} \]

\[0 = \left(-k^2 + \frac{\omega^2}{c^2} \right) E_0 e^{i(kx - \omega t)} \]

\[k = \frac{\omega}{c} \]
“When Schrödinger first wrote it down, he gave a kind of derivation based on some heuristic arguments and some brilliant intuitive guesses. Some of the arguments he used were even false, but that does not matter; the only important thing is that the ultimate equation gives a correct description of nature.” - Richard Feynman

Inspired by wave optics, Schrödinger started with the wave equation for electromagnetic radiation with solution

\[E(x, t) = E_0 e^{i(kx - \omega t)} \]

taking the derivatives and substituting results in the dispersion relation for photons

\[0 = \frac{\partial^2 E}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 E}{\partial t^2} \]

\[0 = \left(-k^2 + \frac{\omega^2}{c^2} \right) E_0 e^{i(kx - \omega t)} \]

\[k = \frac{\omega}{c} \longrightarrow \mathcal{E} = pc \]
Deriving the Schrödinger equation (cont.)

This works for a relativistic massless particle like the photon, but for a non-relativistic particle with mass, we have to start with a different dispersion relation.
Deriving the Schrödinger equation (cont.)

This works for a relativistic massless particle like the photon, but for a non-relativistic particle with mass, we have to start with a different dispersion relation.

The dispersion relation for a non-relativistic particle must be consistent with the classical energy

\[E = \frac{p^2}{2m} = \hbar \omega \]

\[p = \hbar k \rightarrow \hbar k^2 = \frac{2mE}{\hbar^2} \]

Therefore, we need a wave equation which gives this dispersion relation when applied to a traveling matter plane wave, \(\Psi(x,t) = \psi_0 e^{i(kx - \omega t)} \)

\[i\hbar \frac{\partial}{\partial t} \Psi(x,t) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \Psi(x,t) + V(x)\Psi(x,t) \]

when including the possibility of a potential, \(V(x) \), that acts in the particle.
Deriving the Schrödinger equation (cont.)

This works for a relativistic massless particle like the photon, but for a non-relativistic particle with mass, we have to start with a different dispersion relation.

The dispersion relation for a non-relativistic particle must be consistent with the classical energy

\[\mathcal{E} = \frac{p^2}{2m} = \hbar \omega \]
Deriving the Schrödinger equation (cont.)

This works for a relativistic massless particle like the photon, but for a non-relativistic particle with mass, we have to start with a different dispersion relation.

The dispersion relation for a non-relativistic particle must be consistent with the classical energy and De-Broglie’s relation

$$E = \frac{p^2}{2m} = \hbar \omega$$
Deriving the Schrödinger equation (cont.)

This works for a relativistic massless particle like the photon, but for a non-relativistic particle with mass, we have to start with a different dispersion relation.

The dispersion relation for a non-relativistic particle must be consistent with the classical energy and De-Broglie’s relation

\[E = \frac{p^2}{2m} = \hbar \omega \]

\[p = \hbar k \]
Deriving the Schrödinger equation (cont.)

This works for a relativistic massless particle like the photon, but for a non-relativistic particle with mass, we have to start with a different dispersion relation.

The dispersion relation for a non-relativistic particle must be consistent with the classical energy and De-Broglie’s relation

\[
\mathcal{E} = \frac{p^2}{2m} = \hbar \omega
\]

\[
p = \hbar k \quad \rightarrow \quad \frac{\hbar^2 k^2}{2m} = \hbar \omega
\]
Deriving the Schrödinger equation (cont.)

This works for a relativistic massless particle like the photon, but for a non-relativistic particle with mass, we have to start with a different dispersion relation.

The dispersion relation for a non-relativistic particle must be consistent with the classical energy and De-Broglie’s relation

\[E = \frac{p^2}{2m} = \hbar \omega \]

\[p = \hbar k \quad \longrightarrow \quad \frac{\hbar^2 k^2}{2m} = \hbar \omega \]

Therefore, we need a wave equation which gives this dispersion relation when applied to a traveling matter plane wave, \(\Psi(x, t) = \psi_0 e^{i(kx - \omega t)} \)
Deriving the Schrödinger equation (cont.)

This works for a relativistic massless particle like the photon, but for a non-relativistic particle with mass, we have to start with a different dispersion relation.

The dispersion relation for a non-relativistic particle must be consistent with the classical energy and DeBroglie’s relation

\[E = \frac{p^2}{2m} = \hbar \omega \]

\[p = \hbar k \quad \rightarrow \quad \frac{\hbar^2 k^2}{2m} = \hbar \omega \]

Therefore, we need a wave equation which gives this dispersion relation when applied to a traveling matter plane wave, \(\Psi(x, t) = \psi_0 e^{i(kx - \omega t)} \)

\[i\hbar \frac{\partial}{\partial t} \psi(x, t) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi(x, t) \]
Deriving the Schrödinger equation (cont.)

This works for a relativistic massless particle like the photon, but for a non-relativistic particle with mass, we have to start with a different dispersion relation.

The dispersion relation for a non-relativistic particle must be consistent with the classical energy and DeBroglie’s relation

\[
E = \frac{p^2}{2m} = \hbar \omega \\
p = \hbar k \quad \rightarrow \quad \frac{\hbar^2 k^2}{2m} = \hbar \omega
\]

Therefore, we need a wave equation which gives this dispersion relation when applied to a traveling matter plane wave, \(\Psi(x, t) = \psi_0 e^{i(kx - \omega t)} \)

\[
i\hbar \frac{\partial}{\partial t} \psi(x, t) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi(x, t)
\]

when including the possibility of a potential, \(V(x) \), that acts in the particle, we have
Deriving the Schrödinger equation (cont.)

This works for a relativistic massless particle like the photon, but for a non-relativistic particle with mass, we have to start with a different dispersion relation.

The dispersion relation for a non-relativistic particle must be consistent with the classical energy and De-Broglie’s relation

\[E = \frac{p^2}{2m} = \hbar \omega \]
\[p = \hbar k \quad \rightarrow \quad \frac{\hbar^2 k^2}{2m} = \hbar \omega \]

Therefore, we need a wave equation which gives this dispersion relation when applied to a traveling matter plane wave, \(\Psi(x, t) = \psi_0 e^{i(kx - \omega t)} \)

\[i\hbar \frac{\partial}{\partial t} \psi(x, t) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi(x, t) + V(x) \psi(x, t) \]

when including the possibility of a potential, \(V(x) \), that acts in the particle, we have