Today’s Outline - January 28, 2013

- First order PT examples
- Second order PT
- Degenerate PT

Reading Assignment: Chapter 6.3

Homework Assignment #02:
Chapter 5: 27, 30; Chapter 6: 1, 4, 6, 29
due Monday, February 4, 2013
Today’s Outline - January 28, 2013

- First order PT examples
Today's Outline - January 28, 2013

- First order PT examples
- Second order PT

Reading Assignment: Chapter 6.3

Homework Assignment #02: Chapter 5: 27, 30; Chapter 6: 1, 4, 6, 29

due Monday, February 4, 2013
Today’s Outline - January 28, 2013

- First order PT examples
- Second order PT
- Degenerate PT
Today’s Outline - January 28, 2013

- First order PT examples
- Second order PT
- Degenerate PT

Reading Assignment: Chapter 6.3
Today’s Outline - January 28, 2013

- First order PT examples
- Second order PT
- Degenerate PT

Reading Assignment: Chapter 6.3

Homework Assignment #02:
- Chapter 5: 27, 30; Chapter 6: 1, 4, 6, 29
- due Monday, February 4, 2013
Unperturbed Hamiltonian, H^0
with solutions ψ_n^0
First order perturbation theory review

Unperturbed Hamiltonian, H^0
with solutions ψ^0_n

\[H^0 \psi^0_n = E^0_n \psi^0_n \]
First order perturbation theory review

Unperturbed Hamiltonian, H^0
with solutions ψ_n^0

$$H^0 \psi_n^0 = E_n^0 \psi_n^0$$
$$\langle \psi_n^0 | \psi_m^0 \rangle = \delta_{nm}$$
First order perturbation theory review

Unperturbed Hamiltonian, H^0
with solutions ψ_n^0

"perturbed" Hamiltonian,

$$H = H^0 + H'$$

$$H^0 \psi_n^0 = E_n^0 \psi_n^0$$

$$\langle \psi_n^0 | \psi_m^0 \rangle = \delta_{nm}$$
First order perturbation theory review

Unperturbed Hamiltonian, H^0
with solutions ψ_n^0

“perturbed” Hamiltonian,

\[H = H^0 + H' \]

\[H^0 \psi_n^0 = E_n^0 \psi_n^0 \]
\[\langle \psi_n^0 | \psi_m^0 \rangle = \delta_{nm} \]
\[H \psi_n = E_n \psi_n \]
First order perturbation theory review

Unperturbed Hamiltonian, H^0
with solutions ψ_n^0

“perturbed” Hamiltonian,

$$H = H^0 + H'$$

$$H^0 \psi_n^0 = E_n^0 \psi_n^0$$

$$\langle \psi_n^0 | \psi_m^0 \rangle = \delta_{nm}$$

$$H \psi_n = E_n \psi_n$$

$$\psi_n = \sum_m c_m(n) \psi_m^0$$
First order perturbation theory review

Unperturbed Hamiltonian, H^0
with solutions ψ^0_n

"perturbed" Hamiltonian,

$$H = H^0 + H'$$

first order energy correction

$$H^0 \psi^0_n = E_n^0 \psi^0_n$$

$$\langle \psi^0_n | \psi^0_m \rangle = \delta_{nm}$$

$$H \psi_n = E_n \psi_n$$

$$\psi_n = \sum_m c^{(n)}_m \psi^0_m$$
Unperturbed Hamiltonian, H^0
with solutions ψ_n^0

"perturbed" Hamiltonian,

$$H = H^0 + H'$$

first order energy correction

$$H^0 \psi_n^0 = E_n^0 \psi_n^0$$
$$\langle \psi_n^0 | \psi_m^0 \rangle = \delta_{nm}$$

$$H \psi_n = E_n \psi_n$$
$$\psi_n = \sum_m c_m^{(n)} \psi_m^0$$

$$E_n^1 = \langle \psi_n^0 | H' | \psi_n^0 \rangle$$
First order perturbation theory review

Unperturbed Hamiltonian, \(H^0 \)
with solutions \(\psi_n^0 \)

“perturbed” Hamiltonian,

\[
H = H^0 + H'
\]

first order energy correction

\[
H \psi_n = E_n \psi_n
\]

\[
\psi_n = \sum_m c_m^{(n)} \psi_m^0
\]

first order wavefunction correction

\[
E_n^1 = \langle \psi_n^0 | H' | \psi_n^0 \rangle
\]
First order perturbation theory review

Unperturbed Hamiltonian, \(H^0 \)
with solutions \(\psi_n^0 \)

“perturbed” Hamiltonian,
\[
H = H^0 + H'
\]

first order energy correction

first order wavefunction correction

\[
H^0 \psi_n^0 = E_n^0 \psi_n^0
\]
\[
\langle \psi_n^0 | \psi_m^0 \rangle = \delta_{nm}
\]

\[
H \psi_n = E_n \psi_n
\]

\[
\psi_n = \sum_m c_m^{(n)} \psi_m^0
\]

\[
E_n^1 = \langle \psi_n^0 | H' | \psi_n^0 \rangle
\]

\[
\psi_n^1 = \sum_{m \neq n} \frac{\langle \psi_m^0 | H' | \psi_n^0 \rangle \psi_m^0}{(E_n^0 - E_m^0)}
\]
Example 6.1

Constant potential, V_0 in an infinite square well from $x = 0$ to $x = a$
Example 6.1

Constant potential, V_0 in an infinite square well from $x = 0$ to $x = a$

The unperturbed wavefunctions
Example 6.1

Constant potential, V_0 in an infinite square well from $x = 0$ to $x = a$

The unperturbed wavefunctions

$$\psi_n^0(x) = \sqrt{\frac{2}{a}} \sin \left(\frac{n\pi}{a} x \right)$$
Example 6.1

Constant potential, V_0 in an infinite square well from $x = 0$ to $x = a$

The unperturbed wavefunctions

$$\psi^0_n(x) = \sqrt{\frac{2}{a}} \sin \left(\frac{n\pi}{a} x \right)$$

the perturbing potential is $H' = V_0$
Example 6.1

Constant potential, V_0 in an infinite square well from $x = 0$ to $x = a$

The unperturbed wavefunctions

$$\psi_0^0(x) = \sqrt{\frac{2}{a}} \sin \left(\frac{n\pi}{a} x \right)$$

the perturbing potential is $H' = V_0$ and the first order energy correction
Example 6.1

Constant potential, V_0 in an infinite square well from $x = 0$ to $x = a$

The unperturbed wavefunctions

$$
\psi_n^0(x) = \sqrt{\frac{2}{a}} \sin \left(\frac{n\pi}{a} x \right)
$$

the perturbing potential is $H' = V_0$ and the first order energy correction

$$
E_n^1 = \langle \psi_n^0 | V_0 | \psi_n^0 \rangle
$$
Example 6.1

Constant potential, V_0 in an infinite square well from $x = 0$ to $x = a$

The unperturbed wavefunctions

$$\psi_n^0(x) = \sqrt{\frac{2}{a}} \sin \left(\frac{n\pi}{a} x \right)$$

the perturbing potential is $H' = V_0$ and the first order energy correction

$$E_n^1 = \langle \psi_n^0 | V_0 | \psi_n^0 \rangle = V_0 \langle \psi_n^0 | \psi_n^0 \rangle$$
Example 6.1

Constant potential, V_0 in an infinite square well from $x = 0$ to $x = a$

The unperturbed wavefunctions

$$
\psi_n^0(x) = \sqrt{\frac{2}{a}} \sin \left(\frac{n\pi}{a} x \right)
$$

the perturbing potential is $H' = V_0$ and the first order energy correction

$$
E_n^1 = \langle \psi_n^0 | V_0 | \psi_n^0 \rangle = V_0 \langle \psi_n^0 | \psi_n^0 \rangle = V_0
$$
Example 6.1

Constant potential, V_0 in an infinite square well from $x = 0$ to $x = a$

The unperturbed wavefunctions

$$\psi_n^0(x) = \sqrt{\frac{2}{a}} \sin \left(\frac{n\pi}{a} x \right)$$

the perturbing potential is $H' = V_0$ and the first order energy correction

this is an exact solution with

$$E_n^1 = \langle \psi_n^0 | V_0 | \psi_n^0 \rangle = V_0 \langle \psi_n^0 | \psi_n^0 \rangle = V_0$$

$$\psi_n \equiv \psi_n^0$$
Example 6.1

Constant potential, \(V_0 \) in an infinite square well from \(x = 0 \) to \(x = a \)

The unperturbed wavefunctions

\[\psi_0^0(x) = \sqrt{\frac{2}{a}} \sin \left(\frac{n\pi}{a} x \right) \]

the perturbing potential is \(H' = V_0 \) and the first order energy correction

\[E_1^n = \langle \psi_0^n | V_0 | \psi_0^n \rangle = V_0 \langle \psi_0^n | \psi_0^n \rangle = V_0 \]

this is an exact solution with \(\psi_n \equiv \psi_0^n \)

suppose the perturbing potential extends only from \(0 < x < a/2 \)?
Example 6.1

Constant potential, V_0 in an infinite square well from $x = 0$ to $x = a$

The unperturbed wavefunctions

$$\psi_n^0(x) = \sqrt{\frac{2}{a}} \sin \left(\frac{n\pi}{a} x\right)$$

the perturbing potential is $H' = V_0$ and the first order energy correction

$$E_n^1 = \langle \psi_n^0 | V_0 | \psi_n^0 \rangle = V_0 \langle \psi_n^0 | \psi_n^0 \rangle = V_0$$

this is an exact solution with

$$\psi_n \equiv \psi_n^0$$

suppose the perturbing potential extends only from $0 < x < a/2$?

$$E_n^1 = \frac{2V_0}{a} \int_0^{a/2} \sin^2 \left(\frac{n\pi}{a} x\right) dx$$
Example 6.1

Constant potential, \(V_0 \) in an infinite square well from \(x = 0 \) to \(x = a \)

The unperturbed wavefunctions

\[
\psi_n^0(x) = \sqrt{\frac{2}{a}} \sin \left(\frac{n\pi}{a} x \right)
\]

the perturbing potential is \(H' = V_0 \) and the first order energy correction

\[
E_n^1 = \langle \psi_n^0 | V_0 | \psi_n^0 \rangle = V_0 \langle \psi_n^0 | \psi_n^0 \rangle = V_0
\]

this is an exact solution with

\[
\psi_n \equiv \psi_n^0
\]

suppose the perturbing potential extends only from \(0 < x < a/2 \)?

\[
E_n^1 = \frac{2V_0}{a} \int_0^{a/2} \sin^2 \left(\frac{n\pi}{a} x \right) dx = \frac{2V_0}{a} \int_0^{a/2} \frac{1}{2} \left[1 - \cos \left(\frac{2n\pi}{a} x \right) \right] dx
\]
Example 6.1

Constant potential, V_0 in an infinite square well from $x = 0$ to $x = a$

The unperturbed wavefunctions

$$\psi_n^0(x) = \sqrt{\frac{2}{a}} \sin \left(\frac{n\pi}{a} x\right)$$

the perturbing potential is $H' = V_0$ and the first order energy correction

$$E_n^1 = \langle \psi_n^0 | V_0 | \psi_n^0 \rangle = V_0 \langle \psi_n^0 | \psi_n^0 \rangle = V_0$$

this is an exact solution with

$$\psi_n \equiv \psi_n^0$$

suppose the perturbing potential extends only from $0 < x < a/2$?

$$E_n^1 = \frac{2V_0}{a} \int_0^{a/2} \sin^2 \left(\frac{n\pi}{a} x\right) dx = \frac{2V_0}{a} \int_0^{a/2} \frac{1}{2} \left[1 - \cos \left(\frac{2n\pi}{a} x\right) \right] dx$$

$$= \frac{V_0}{a} \left[x - \frac{a}{2n\pi} \sin \left(\frac{2n\pi}{a} x\right) \right]_0^{a/2}$$
Example 6.1

Constant potential, V_0 in an infinite square well from $x = 0$ to $x = a$

The unperturbed wavefunctions

$$\psi^0_n(x) = \sqrt{\frac{2}{a}} \sin \left(\frac{n\pi}{a} x \right)$$

the perturbing potential is $H' = V_0$ and the first order energy correction

$$E_n^1 = \langle \psi^0_n | V_0 | \psi^0_n \rangle = V_0 \langle \psi^0_n | \psi^0_n \rangle = V_0$$

this is an exact solution with

$$\psi_n \equiv \psi^0_n$$

suppose the perturbing potential extends only from $0 < x < a/2$?

$$E_n^1 = \frac{2V_0}{a} \int_0^{a/2} \sin^2 \left(\frac{n\pi}{a} x \right) \, dx = \frac{2V_0}{a} \int_0^{a/2} \frac{1}{2} \left[1 - \cos \left(\frac{2n\pi}{a} x \right) \right] \, dx$$

$$= \frac{V_0}{a} \left[x - \frac{a}{2n\pi} \sin \left(\frac{2n\pi}{a} x \right) \right]_0^{a/2} = \frac{V_0}{a} \left[\frac{a}{2} + 0 \right]$$
Example 6.1

Constant potential, V_0 in an infinite square well from $x = 0$ to $x = a$

The unperturbed wavefunctions

$$\psi_n^0(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right)$$

the perturbing potential is $H' = V_0$ and the first order energy correction

$$E_n^1 = \langle \psi_n^0 | V_0 | \psi_n^0 \rangle = V_0 \langle \psi_n^0 | \psi_n^0 \rangle = V_0$$

this is an exact solution with

$$\psi_n \equiv \psi_n^0$$

suppose the perturbing potential extends only from $0 < x < a/2$?

$$E_n^1 = \frac{2V_0}{a} \int_0^{a/2} \sin^2\left(\frac{n\pi}{a}x\right) dx = \frac{2V_0}{a} \int_0^{a/2} \frac{1}{2} \left[1 - \cos\left(\frac{2n\pi}{a}x\right) \right] dx$$

$$= \frac{V_0}{a} \left[x - \frac{a}{2n\pi} \sin\left(\frac{2n\pi}{a}x\right) \right]_0^{a/2} = \frac{V_0}{a} \left[\frac{a}{2} + 0 \right] = \frac{V_0}{2}$$
Example 6.1

Constant potential, V_0 in an infinite square well from $x = 0$ to $x = a$

The unperturbed wavefunctions

$$\psi_n^0(x) = \sqrt{\frac{2}{a}} \sin \left(\frac{n\pi}{a} x \right)$$

the perturbing potential is $H' = V_0$ and the first order energy correction

$$E_n^1 = \langle \psi_n^0 | V_0 | \psi_n^0 \rangle = V_0 \langle \psi_n^0 | \psi_n^0 \rangle = V_0$$

this is an exact solution with

$$\psi_n \equiv \psi_n^0$$

suppose the perturbing potential extends only from $0 < x < a/2$?

$$E_n^1 = \frac{2V_0}{a} \int_0^{a/2} \sin^2 \left(\frac{n\pi}{a} x \right) \, dx = \frac{2V_0}{a} \int_0^{a/2} \frac{1}{2} \left[1 - \cos \left(\frac{2n\pi}{a} x \right) \right] \, dx$$

$$= \frac{V_0}{a} \left[x - \frac{a}{2n\pi} \sin \left(\frac{2n\pi}{a} x \right) \right]_0^{a/2} = \frac{V_0}{a} \left[\frac{a}{2} + 0 \right] = \frac{V_0}{2}$$

this is not an exact solution but the first term in a series of energy correction terms