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Wigglers and Undulators

Wiggler Undulator

Just like bending magnet except: Different from bending magnet:
e larger B — E. higher e shallow bends — small source
e more bends — power e interference effects — highly

peaked spectrum
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Wiggler Radiation

e The electron’s trajectory through a wiggler can be considered as a
series of short circular arcs, each like a bending magnet

Power[kW] = 1.266£2[GeV]B[T]L[m]/[A]
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o If there are N poles to the wiggler, there are 2N arcs

e Each arc contributes as might a single bending magnet but the more
linear path means that the effective length, L, is much longer.

e The magnetic field varies along the length of the wiggler and is higher
than that in a bending magnet, having an average value of

Brms - Bo/\ﬁ
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Wiggler Radiation

e The electron’s trajectory through a wiggler can be considered as a
series of short circular arcs, each like a bending magnet

o If there are N poles to the wiggler, there are 2N arcs

e Each arc contributes as might a single bending magnet but the more
linear path means that the effective length, L, is much longer.

e The magnetic field varies along the length of the wiggler and is higher
than that in a bending magnet, having an average value of
Brms - Bo/\ﬁ

e This results in a significantly higher power load on all downstream
components

Power[kW] = 0.633E2[GeV]B2[T]L[m]/[A]
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Undulator Characterization

Undulator radiation is characterized
by three parameters:
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Undulator radiation is characterized We can, therefore write:
by three parameters: .
x = Asin (kyz)
e The energy of the electrons, d
X
e The wavelength, \,, of it’s Qmax = =
. . dz lz=0
magnetic field Ak (ko2)
. = cos (k,z
e The maximum angular “ “lz=0
deviaton of the electron, amax = Ak,
Define a dimensionless quantity, K which scales amax to the natural
opening angle of the radiation, 1/
C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010

3/8



Undulator Characterization

Undulator radiation is characterized We can, therefore write:
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Define a dimensionless quantity, K which scales amax to the natural
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Circular Path Approximation

X A

Consider the trajectory of the electron along one period of the undulator.
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Circular Path Approximation

X A

Consider the trajectory of the electron along one period of the undulator.
Since the curvature is small, the path can be approximated by an arc or a
circle of radius p whose origin lies at x = —(p — A) and z = 0.
The equation of the circle which approximates the arc is:

=+ (p—AP+7

X+ (p—A)=vp =2
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Radius of Curvature

From the equation for a circle:

x=A—-p+\p?>—2°
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Combining, we have
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Electron Path Length

The displacement ds of the elec-
tron can be expressed in terms of
the two coordinates, x and z as:
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Electron Path Length

The textbook presents a different
constant factor for the second term
and we will proceed using that factor
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The K Parameter

Given the definition K = yAk,, we can rewrite the radius of curvature of
the electron’s path in the undulator as
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Recalling that the radius of curvature is related to the electron momentum
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For APS Undulator A, A, = 3.3cm and B, = 0.6T at closed gap, so
K =0.934 -3.3[cm] - 0.6[T] = 1.85
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