
Wigglers and Undulators

Wiggler

Just like bending magnet except:

• larger ~B → Ec higher

• more bends → power

Undulator

Different from bending magnet:

• shallow bends → small source

• interference effects → highly
peaked spectrum
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Wiggler Radiation

• The electron’s trajectory through a wiggler can be considered as a
series of short circular arcs, each like a bending magnet

• If there are N poles to the wiggler, there are 2N arcs

• Each arc contributes as might a single bending magnet but the more
linear path means that the effective length, L, is much longer.

• The magnetic field varies along the length of the wiggler and is higher
than that in a bending magnet, having an average value of
Brms = Bo/

√
2

• This results in a significantly higher power load on all downstream
components

Power [kW] = 1.266E2e [GeV]B[T]L[m]I [A]
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Undulator Characterization

α
max

A

λ
u

z

x

Undulator radiation is characterized
by three parameters:

• The energy of the electrons, γ

• The wavelength, λu, of it’s
magnetic field

• The maximum angular
deviaton of the electron, αmax

We can, therefore write:

x = A sin (kuz)

αmax =
dx

dz

∣∣∣
z=0

= Aku cos (kuz)
∣∣∣
z=0

= Aku

Define a dimensionless quantity, K which scales αmax to the natural
opening angle of the radiation, 1/γ

K = αmaxγ
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Circular Path Approximation

Aρ

λ
u

z

x

Consider the trajectory of the electron along one period of the undulator.

Since the curvature is small, the path can be approximated by an arc or a
circle of radius ρ whose origin lies at x = −(ρ− A) and z = 0.
The equation of the circle which approximates the arc is:

ρ2 = [x + (ρ− A)]2 + z2

x + (ρ− A) =
√
ρ2 − z2
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Radius of Curvature

From the equation for a circle:

x = A− ρ+
√
ρ2 − z2

= A− ρ+ ρ

√
1− z2

ρ2

≈ A− ρ+ ρ

(
1− 1

2

z2

ρ2

)
≈ A− z2

2ρ

For the undulating path:

x = A cos (kuz)

≈ A

(
1− k2uz

2

2

)
≈ A− Ak2uz

2

2

Combining, we have

1

ρ
= Ak2u −→ ρ =

1

Ak2u
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Electron Path Length

The displacement ds of the elec-
tron can be expressed in terms of
the two coordinates, x and z as:

ds =
√

(dx)2 + (dz)2

=

√
1 +

(
dx

dz

)2

dz

ds
dx

dz

dx

dz
=

d

dz

(
A− Ak2uz

2

2

)
= −Ak2uz

Now calculate the length of the path traveled by the electron over one
period of the undulator

Sλu =

∫ λu

0

√
1 +

(
dx

dz

)2

dz =

∫ λu

0

√
1 + A2k4uz

2 dz

≈
∫ λu

0

(
1 +

1

2
A2k4uz

2

)
dz =

[
z +

1

6
A2k4uz

3

∣∣∣∣λu

0
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Electron Path Length
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(
2π
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(

1 +
2π2

3
A2k2u

)

The textbook presents a different
constant factor for the second term
and we will proceed using that factor
for simplicity

Sλu ≈
(

1 +
1

4
A2k2u

)

Using the definition for the undulator
parameter K = γAku, we have

Sλu ≈
(

1 +
1

4

K 2

γ2

)

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 7 / 8



Electron Path Length

Sλu ≈
[
z +

1

6
A2k4uz

3

∣∣∣∣λu

0

≈
(
λu +

1

6
A2k4uλ

3
u

)

≈ λu
(

1 +
1

6
A2k4uλ

2
u

)
≈ λu

(
1 +

1

6
A2k4u

(
2π

ku

)2
)

≈ λu
(

1 +
2π2

3
A2k2u

)

The textbook presents a different
constant factor for the second term
and we will proceed using that factor
for simplicity

Sλu ≈
(

1 +
1

4
A2k2u

)

Using the definition for the undulator
parameter K = γAku, we have

Sλu ≈
(

1 +
1

4

K 2

γ2

)

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 7 / 8



Electron Path Length

Sλu ≈
[
z +

1

6
A2k4uz

3

∣∣∣∣λu

0

≈
(
λu +

1

6
A2k4uλ

3
u

)
≈ λu

(
1 +

1

6
A2k4uλ

2
u

)

≈ λu

(
1 +

1

6
A2k4u

(
2π

ku

)2
)

≈ λu
(

1 +
2π2

3
A2k2u

)

The textbook presents a different
constant factor for the second term
and we will proceed using that factor
for simplicity

Sλu ≈
(

1 +
1

4
A2k2u

)

Using the definition for the undulator
parameter K = γAku, we have

Sλu ≈
(

1 +
1

4

K 2

γ2

)

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 7 / 8



Electron Path Length

Sλu ≈
[
z +

1

6
A2k4uz

3

∣∣∣∣λu

0

≈
(
λu +

1

6
A2k4uλ

3
u

)
≈ λu

(
1 +

1

6
A2k4uλ

2
u

)
≈ λu

(
1 +

1

6
A2k4u

(
2π

ku

)2
)

≈ λu
(

1 +
2π2

3
A2k2u

)

The textbook presents a different
constant factor for the second term
and we will proceed using that factor
for simplicity

Sλu ≈
(

1 +
1

4
A2k2u

)

Using the definition for the undulator
parameter K = γAku, we have

Sλu ≈
(

1 +
1

4

K 2

γ2

)

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 7 / 8



Electron Path Length

Sλu ≈
[
z +

1

6
A2k4uz

3

∣∣∣∣λu

0

≈
(
λu +

1

6
A2k4uλ

3
u

)
≈ λu

(
1 +

1

6
A2k4uλ

2
u

)
≈ λu

(
1 +

1

6
A2k4u

(
2π

ku

)2
)

≈ λu
(

1 +
2π2

3
A2k2u

)

The textbook presents a different
constant factor for the second term
and we will proceed using that factor
for simplicity

Sλu ≈
(

1 +
1

4
A2k2u

)

Using the definition for the undulator
parameter K = γAku, we have

Sλu ≈
(

1 +
1

4

K 2

γ2

)

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 7 / 8



Electron Path Length

Sλu ≈
[
z +

1

6
A2k4uz

3

∣∣∣∣λu

0

≈
(
λu +

1

6
A2k4uλ

3
u

)
≈ λu

(
1 +

1

6
A2k4uλ

2
u

)
≈ λu

(
1 +

1

6
A2k4u

(
2π

ku

)2
)

≈ λu
(

1 +
2π2

3
A2k2u

)

The textbook presents a different
constant factor for the second term
and we will proceed using that factor
for simplicity

Sλu ≈
(

1 +
1

4
A2k2u

)

Using the definition for the undulator
parameter K = γAku, we have

Sλu ≈
(

1 +
1

4

K 2

γ2

)

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 7 / 8



Electron Path Length

Sλu ≈
[
z +

1

6
A2k4uz

3

∣∣∣∣λu

0

≈
(
λu +

1

6
A2k4uλ

3
u

)
≈ λu

(
1 +

1

6
A2k4uλ

2
u

)
≈ λu

(
1 +

1

6
A2k4u

(
2π

ku

)2
)

≈ λu
(

1 +
2π2

3
A2k2u

)

The textbook presents a different
constant factor for the second term
and we will proceed using that factor
for simplicity

Sλu ≈
(

1 +
1

4
A2k2u

)

Using the definition for the undulator
parameter K = γAku, we have

Sλu ≈
(

1 +
1

4

K 2

γ2

)

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 7 / 8



Electron Path Length

Sλu ≈
[
z +

1

6
A2k4uz

3

∣∣∣∣λu

0

≈
(
λu +

1

6
A2k4uλ

3
u

)
≈ λu

(
1 +

1

6
A2k4uλ

2
u

)
≈ λu

(
1 +

1

6
A2k4u

(
2π

ku

)2
)

≈ λu
(

1 +
2π2

3
A2k2u

)

The textbook presents a different
constant factor for the second term
and we will proceed using that factor
for simplicity

Sλu ≈
(

1 +
1

4
A2k2u

)

Using the definition for the undulator
parameter K = γAku, we have

Sλu ≈
(

1 +
1

4

K 2

γ2

)

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 7 / 8



Electron Path Length

Sλu ≈
[
z +

1

6
A2k4uz

3

∣∣∣∣λu

0

≈
(
λu +

1

6
A2k4uλ

3
u

)
≈ λu

(
1 +

1

6
A2k4uλ

2
u

)
≈ λu

(
1 +

1

6
A2k4u

(
2π

ku

)2
)

≈ λu
(

1 +
2π2

3
A2k2u

)

The textbook presents a different
constant factor for the second term
and we will proceed using that factor
for simplicity

Sλu ≈
(

1 +
1

4
A2k2u

)

Using the definition for the undulator
parameter K = γAku, we have

Sλu ≈
(

1 +
1

4

K 2

γ2

)

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 7 / 8



The K Parameter

Given the definition K = γAku, we can rewrite the radius of curvature of
the electron’s path in the undulator as

ρ =
1

Ak2u
−→ ρ =

γ

Kku

Recalling that the radius of curvature is related to the electron momentum
by the Lorentz force, we have

p = γmv ≈ γmc = ρeBo −→ γmc ≈ γ

Kku
eBo

Combining the above expressions yields

K =
eBo

mcku
=

eBo

2πmc
λu = 0.934λu[cm]Bo [T]

For APS Undulator A, λu = 3.3cm and Bo = 0.6T at closed gap, so

K = 0.934 · 3.3[cm] · 0.6[T] = 1.85
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K = 0.934 · 3.3[cm] · 0.6[T]

= 1.85
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