Wigglers and Undulators

Wiggler

Just like bending magnet except:
• larger \(\vec{B} \rightarrow E \)
• higher
• more bends \(\rightarrow \) power

Undulator
Different from bending magnet:
• shallow bends \(\rightarrow \) small source
• interference effects \(\rightarrow \) highly peaked spectrum
Wigglers and Undulators

Wiggler

Just like bending magnet except:

• larger
 \[\vec{B} \rightarrow E \]
 higher

• more bends
 \[\rightarrow \text{power} \]

Undulator

Different from bending magnet:

• shallow bends
 \[\rightarrow \text{small source} \]

• interference effects
 \[\rightarrow \text{highly peaked spectrum} \]
Wigglers and Undulators

Wiggler

Just like bending magnet except:

- larger $\vec{B} \rightarrow E_c$ higher

Undulator

Different from bending magnet:

- shallow bends \rightarrow small source
- interference effects \rightarrow highly peaked spectrum
Wigglers and Undulators

Just like bending magnet except:

- larger $\vec{B} \rightarrow E_c$ higher
- more bends \rightarrow power

Wiggler
Wigglers and Undulators

Just like bending magnet except:
- larger $\vec{B} \to E_c$ higher
- more bends \to power
Wigglers and Undulators

Wiggler

- Just like bending magnet except:
 - larger $\vec{B} \rightarrow E_c$ higher
 - more bends \rightarrow power

Undulator

- Different from bending magnet:
 - shallow bends \rightarrow small source
 - interference effects \rightarrow highly peaked spectrum
Wigglers and Undulators

Wiggler

Just like bending magnet except:
- larger $\vec{B} \rightarrow E_c$ higher
- more bends \rightarrow power

Undulator

Different from bending magnet:
- shallow bends \rightarrow small source
Wigglers and Undulators

Wiggler

Just like bending magnet except:
- larger $\vec{B} \rightarrow E_c$ higher
- more bends \rightarrow power

Undulator

Different from bending magnet:
- shallow bends \rightarrow small source
- interference effects \rightarrow highly peaked spectrum
Wiggler Radiation

- The electron’s trajectory through a wiggler can be considered as a series of short circular arcs, each like a bending magnet.

\[\text{Power [kW]} = 1.266 \varepsilon_e^2 [\text{GeV}] B [\text{T}] L [\text{m}] / [\text{A}] \]
Wiggler Radiation

- The electron’s trajectory through a wiggler can be considered as a series of short circular arcs, each like a bending magnet.
- If there are N poles to the wiggler, there are $2N$ arcs.

$$Power[kW] = 1.266 \varepsilon_e^2 [GeV] B[T] L[m]/[A]$$
Wiggler Radiation

- The electron’s trajectory through a wiggler can be considered as a series of short circular arcs, each like a bending magnet.
- If there are N poles to the wiggler, there are $2N$ arcs.
- Each arc contributes as might a single bending magnet but the more linear path means that the effective length, L, is much longer.

\[
\text{Power}[\text{kW}] = 1.266\varepsilon_e^2[\text{GeV}]B[\text{T}]L[\text{m}]/[\text{A}]
\]
Wiggler Radiation

- The electron’s trajectory through a wiggler can be considered as a series of short circular arcs, each like a bending magnet.
- If there are N poles to the wiggler, there are $2N$ arcs.
- Each arc contributes as might a single bending magnet but the more linear path means that the effective length, L, is much longer.
- The magnetic field varies along the length of the wiggler and is higher than that in a bending magnet, having an average value of $B_{rms} = B_o/\sqrt{2}$.

$$Power[kW] = 0.633\epsilon_e^2[GeV]B_o^2[T]L[m]/[A]$$
Wiggler Radiation

- The electron’s trajectory through a wiggler can be considered as a series of short circular arcs, each like a bending magnet.
- If there are N poles to the wiggler, there are $2N$ arcs.
- Each arc contributes as might a single bending magnet but the more linear path means that the effective length, L, is much longer.
- The magnetic field varies along the length of the wiggler and is higher than that in a bending magnet, having an average value of $B_{\text{rms}} = B_0/\sqrt{2}$.
- This results in a significantly higher power load on all downstream components.

$$\text{Power}[\text{kW}] = 0.633 \epsilon_e^2 [\text{GeV}] B_0^2 [\text{T}] L [\text{m}] I [\text{A}]$$
Undulator radiation is characterized by three parameters:

- The energy of the electrons, γ
- The wavelength, λ_u, of its magnetic field
- The maximum angular deviation of the electron, α_{max}

We can, therefore write:

$$x = A \sin (k \lambda_u z)$$

$$\alpha_{\text{max}} = \left| \frac{dx}{dz} \right|_{z=0} = A k \lambda_u \cos (k \lambda_u z)$$

Define a dimensionless quantity, K, which scales α_{max} to the natural opening angle of the radiation, $1/\gamma$:

$$K = \frac{\alpha_{\text{max}}}{\gamma}$$
Undulator radiation is characterized by three parameters:

- The energy of the electrons, γ

\[x = A \sin (k \lambda_u z) \]
\[\alpha_{\text{max}} = \frac{dx}{dz} \bigg|_{z=0} = A k \lambda_u \cos (k \lambda_u z) \bigg|_{z=0} = A k \lambda_u \]

Define a dimensionless quantity, K, which scales α_{max} to the natural opening angle of the radiation, $1/\gamma$.

\[K = \frac{\alpha_{\text{max}}}{\gamma} \]
Undulator radiation is characterized by three parameters:

- The energy of the electrons, γ
- The wavelength, λ_u, of its magnetic field

We can, therefore write:

\[x = A \sin (k u z) \]

\[\alpha_{\text{max}} = \left| \frac{dx}{dz} \right|_{z=0} = A k u \cos (k u z) \]

Define a dimensionless quantity, K, which scales α_{max} to the natural opening angle of the radiation, $1/\gamma$:

\[K = \frac{\alpha_{\text{max}}}{\gamma} \]
Undulator radiation is characterized by three parameters:

- The energy of the electrons, γ
- The wavelength, λ_u, of its magnetic field
- The maximum angular deviation of the electron, α_{max}

We can, therefore write:

$$x = A \sin (k u z)$$

$$\alpha_{\text{max}} = \frac{dx}{dz} \bigg|_{z=0} = A k u \cos (k u z) \bigg|_{z=0} = A k u$$

Define a dimensionless quantity, K, which scales α_{max} to the natural opening angle of the radiation, $1/\gamma$

$$K = \frac{\alpha_{\text{max}}}{\gamma}$$
Undulator radiation is characterized by three parameters:

- The energy of the electrons, γ
- The wavelength, λ_u, of its magnetic field
- The maximum angular deviation of the electron, α_{max}

We can, therefore write:

$$x = A \sin (k u z)$$

$$\alpha_{\text{max}} = \left. \frac{dx}{dz} \right|_{z=0} = A k u \cos (k u z)$$

Define a dimensionless quantity, K, which scales α_{max} to the natural opening angle of the radiation, $1/\gamma$

$$K = \frac{\alpha_{\text{max}}}{\gamma}$$
Undulator radiation is characterized by three parameters:

- The energy of the electrons, γ
- The wavelength, λ_u, of its magnetic field
- The maximum angular deviation of the electron, α_{max}

We can, therefore write:

$$x = A \sin (k_u z)$$
Undulator radiation is characterized by three parameters:

- The energy of the electrons, γ
- The wavelength, λ_u, of its magnetic field
- The maximum angular deviation of the electron, α_{max}

We can, therefore write:

$$ x = A \sin \left(k_u z \right) $$

$$ \alpha_{max} $$
Undulator radiation is characterized by three parameters:

- The energy of the electrons, γ
- The wavelength, λ_u, of its magnetic field
- The maximum angular deviation of the electron, α_{max}

We can, therefore write:

$$x = A \sin (k_u z)$$

$$\alpha_{max} = \left. \frac{dx}{dz} \right|_{z=0}$$
Undulator radiation is characterized by three parameters:

- The energy of the electrons, γ
- The wavelength, λ_u, of its magnetic field
- The maximum angular deviation of the electron, α_{max}

We can, therefore write:

$$x = A \sin (k_u z)$$

$$\alpha_{\text{max}} = \left. \frac{dx}{dz} \right|_{z=0} = Ak_u \cos (k_u z) \bigg|_{z=0}$$
Undulator radiation is characterized by three parameters:

- The energy of the electrons, γ
- The wavelength, λ_u, of its magnetic field
- The maximum angular deviation of the electron, α_{max}

We can, therefore write:

$$x = A \sin (k_u z)$$

$$\alpha_{\text{max}} = \left. \frac{dx}{dz} \right|_{z=0}$$

$$= Ak_u \cos (k_u z) \bigg|_{z=0}$$

$$= Ak_u$$
Undulator radiation is characterized by three parameters:

- The energy of the electrons, γ
- The wavelength, λ_u, of its magnetic field
- The maximum angular deviation of the electron, α_{max}

Define a dimensionless quantity, K which scales α_{max} to the natural opening angle of the radiation, $1/\gamma$.

We can, therefore write:

$$x = A \sin(k_u z)$$

$$\alpha_{\text{max}} = \left. \frac{dx}{dz} \right|_{z=0}$$

$$= Ak_u \cos(k_u z) \bigg|_{z=0}$$

$$= Ak_u$$
Undulator radiation is characterized by three parameters:

- The energy of the electrons, γ
- The wavelength, λ_u, of its magnetic field
- The maximum angular deviation of the electron, α_{max}

We can, therefore write:

$$x = A \sin (k_u z)$$

$$\alpha_{max} = \left. \frac{dx}{dz} \right|_{z=0}$$

$$= Ak_u \cos (k_u z) \bigg|_{z=0}$$

$$= Ak_u$$

Define a dimensionless quantity, K which scales α_{max} to the natural opening angle of the radiation, $1/\gamma$

$$K = \alpha_{max} \gamma$$
Consider the trajectory of the electron along one period of the undulator.
Consider the trajectory of the electron along one period of the undulator. Since the curvature is small, the path can be approximated by an arc or a circle of radius ρ whose origin lies at $x = -(\rho - A)$ and $z = 0$.

The equation of the circle which approximates the arc is:

$$\rho^2 = (x + (\rho - A))^2 + z^2$$
Consider the trajectory of the electron along one period of the undulator. Since the curvature is small, the path can be approximated by an arc or a circle of radius ρ whose origin lies at $x = -(\rho - A)$ and $z = 0$. The equation of the circle which approximates the arc is:
Consider the trajectory of the electron along one period of the undulator. Since the curvature is small, the path can be approximated by an arc or a circle of radius ρ whose origin lies at $x = - (\rho - A)$ and $z = 0$. The equation of the circle which approximates the arc is:

$$\rho^2 = [x + (\rho - A)]^2 + z^2$$
Circular Path Approximation

Consider the trajectory of the electron along one period of the undulator. Since the curvature is small, the path can be approximated by an arc or a circle of radius ρ whose origin lies at $x = -(\rho - A)$ and $z = 0$. The equation of the circle which approximates the arc is:

$$\rho^2 = [x + (\rho - A)]^2 + z^2$$

$$x + (\rho - A) = \sqrt{\rho^2 - z^2}$$
Radius of Curvature

From the equation for a circle:

\[x = A - \rho + \sqrt{\rho^2 - z^2} \]
Radius of Curvature

From the equation for a circle:

\[x = A - \rho + \sqrt{\rho^2 - z^2} \]

\[= A - \rho + \rho \sqrt{1 - \frac{z^2}{\rho^2}} \]
Radius of Curvature

From the equation for a circle:

\[x = A - \rho + \sqrt{\rho^2 - z^2} \]

\[= A - \rho + \rho \sqrt{1 - \frac{z^2}{\rho^2}} \]

\[\approx A - \rho + \rho \left(1 - \frac{1}{2} \frac{z^2}{\rho^2}\right) \]
Radius of Curvature

From the equation for a circle:

\[x = A - \rho + \sqrt{\rho^2 - z^2} \]

\[= A - \rho + \rho \sqrt{1 - \frac{z^2}{\rho^2}} \]

\[\approx A - \rho + \rho \left(1 - \frac{1}{2} \frac{z^2}{\rho^2}\right) \]

\[\approx A - \frac{z^2}{2\rho} \]
Radius of Curvature

From the equation for a circle:

\[x = A - \rho + \sqrt{\rho^2 - z^2} \]

\[= A - \rho + \rho \sqrt{1 - \frac{z^2}{\rho^2}} \]

\[\approx A - \rho + \rho \left(1 - \frac{1}{2} \frac{z^2}{\rho^2}\right) \]

\[\approx A - \frac{z^2}{2\rho} \]

For the undulating path:

\[x = A \cos(kuz) \]

\[\approx A \left(1 - \frac{1}{2} k^2 u^2 z^2 \right) \]

\[\approx A - \frac{A k^2 u z^2}{2} \]
Radius of Curvature

From the equation for a circle:

\[x = A - \rho + \sqrt{\rho^2 - z^2} \]

\[= A - \rho + \rho \sqrt{1 - \frac{z^2}{\rho^2}} \]

\[\approx A - \rho + \rho \left(1 - \frac{1}{2} \frac{z^2}{\rho^2} \right) \]

\[\approx A - \frac{z^2}{2\rho} \]

For the undulating path:

\[x = A \cos(k_{uz}z) \]
Radius of Curvature

From the equation for a circle:

\[x = A - \rho + \sqrt{\rho^2 - z^2} \]

\[= A - \rho + \rho \sqrt{1 - \frac{z^2}{\rho^2}} \]

\[\approx A - \rho + \rho \left(1 - \frac{1}{2} \frac{z^2}{\rho^2}\right) \]

\[\approx A - \frac{z^2}{2\rho} \]

For the undulating path:

\[x = A \cos(k_u z) \]

\[\approx A \left(1 - \frac{k_u^2 z^2}{2}\right) \]
Radius of Curvature

From the equation for a circle:

\[x = A - \rho + \sqrt{\rho^2 - z^2} \]

\[= A - \rho + \rho \sqrt{1 - \frac{z^2}{\rho^2}} \]

\[\approx A - \rho + \rho \left(1 - \frac{1}{2} \frac{z^2}{\rho^2}\right) \]

\[\approx A - \frac{z^2}{2\rho} \]

For the undulating path:

\[x = A \cos(k_u z) \]

\[\approx A \left(1 - \frac{k_u^2 z^2}{2}\right) \]

\[\approx A - \frac{Ak_u^2 z^2}{2} \]
Radius of Curvature

From the equation for a circle:

\[x = A - \rho + \sqrt{\rho^2 - z^2} \]

\[= A - \rho + \rho \sqrt{1 - \frac{z^2}{\rho^2}} \]

\[\approx A - \rho + \rho \left(1 - \frac{1}{2} \frac{z^2}{\rho^2} \right) \]

\[\approx A - \frac{z^2}{2\rho} \]

Combining, we have

\[\frac{1}{\rho} = Ak_u^2 \]

For the undulating path:

\[x = A \cos (k_u z) \]

\[\approx A \left(1 - \frac{k_u^2 z^2}{2} \right) \]

\[\approx A - \frac{Ak_u^2 z^2}{2} \]
Radius of Curvature

From the equation for a circle:

\[x = A - \rho + \sqrt{\rho^2 - z^2} \]

\[= A - \rho + \rho \sqrt{1 - \frac{z^2}{\rho^2}} \]

\[\approx A - \rho + \rho \left(1 - \frac{1}{2} \frac{z^2}{\rho^2}\right) \]

\[\approx A - \frac{z^2}{2\rho} \]

Combining, we have

\[\frac{1}{\rho} = Ak_u^2 \quad \rightarrow \quad \rho = \frac{1}{Ak_u^2} \]

For the undulating path:

\[x = A \cos(k_u z) \]

\[\approx A \left(1 - \frac{k_u^2 z^2}{2}\right) \]

\[\approx A - \frac{Ak_u^2 z^2}{2} \]
Electron Path Length

The displacement \(ds \) of the electron can be expressed in terms of the two coordinates, \(x \) and \(z \) as:

\[
ds = \sqrt{(dx)^2 + (dz)^2}
\]

Now calculate the length of the path traveled by the electron over one period of the undulator:

\[
S = \int_0^\lambda u \sqrt{1 + (dx/dz)^2} \, dz
\]

\[
\approx \int_0^\lambda u \left(1 + \frac{1}{2} A^2 k^4 u z^2 \right) \, dz
\]

\[
= \left[z + \frac{1}{6} A^2 k^4 u z^3\right]_0^\lambda u
\]
The displacement ds of the electron can be expressed in terms of the two coordinates, x and z as:

$$ds = \sqrt{(dx)^2 + (dz)^2}$$
Electron Path Length

The displacement ds of the electron can be expressed in terms of the two coordinates, x and z as:

$$ds = \sqrt{(dx)^2 + (dz)^2} = \sqrt{1 + \left(\frac{dx}{dz}\right)^2} \, dz$$
Electron Path Length

The displacement ds of the electron can be expressed in terms of the two coordinates, x and z as:

$$ds = \sqrt{(dx)^2 + (dz)^2}$$

$$= \sqrt{1 + \left(\frac{dx}{dz}\right)^2} \, dz$$

$$dx \frac{dz}{dz} = \frac{d}{dz} \left(A - \frac{Ak_u^2z^2}{2} \right)$$
Electron Path Length

The displacement ds of the electron can be expressed in terms of the two coordinates, x and z as:

$$ds = \sqrt{(dx)^2 + (dz)^2}$$

$$= \sqrt{1 + \left(\frac{dx}{dz} \right)^2} dz$$

$$\frac{dx}{dz} = \frac{d}{dz} \left(A - \frac{Ak_u^2z^2}{2} \right) = -Ak_u^2z$$
Electron Path Length

The displacement ds of the electron can be expressed in terms of the two coordinates, x and z as:

$$ds = \sqrt{(dx)^2 + (dz)^2} = \sqrt{1 + \left(\frac{dx}{dz}\right)^2} \, dz$$

Now calculate the length of the path traveled by the electron over one period of the undulator.
Electron Path Length

The displacement ds of the electron can be expressed in terms of the two coordinates, x and z as:

$$ds = \sqrt{(dx)^2 + (dz)^2}$$

$$= \sqrt{1 + \left(\frac{dx}{dz}\right)^2} \, dz$$

Now calculate the length of the path traveled by the electron over one period of the undulator

$$S\lambda_u = \int_{0}^{\lambda_u} \sqrt{1 + \left(\frac{dx}{dz}\right)^2} \, dz$$
Electron Path Length

The displacement ds of the electron can be expressed in terms of the two coordinates, x and z as:

$$ds = \sqrt{(dx)^2 + (dz)^2}$$

$$= \sqrt{1 + \left(\frac{dx}{dz}\right)^2} \, dz$$

Now calculate the length of the path traveled by the electron over one period of the undulator

$$S_{\lambda u} = \int_0^{\lambda u} \sqrt{1 + \left(\frac{dx}{dz}\right)^2} \, dz = \int_0^{\lambda u} \sqrt{1 + A^2 k_u^4 z^2} \, dz$$

$$\frac{dx}{dz} = \frac{d}{dz} \left(A - \frac{A k_u^2 z^2}{2} \right) = -A k_u^2 z$$
Electron Path Length

The displacement ds of the electron can be expressed in terms of the two coordinates, x and z as:

$$ds = \sqrt{(dx)^2 + (dz)^2} = \sqrt{1 + \left(\frac{dx}{dz} \right)^2} dz$$

Now calculate the length of the path traveled by the electron over one period of the undulator

$$S_{\lambda u} = \int_0^{\lambda u} \sqrt{1 + \left(\frac{dx}{dz} \right)^2} \, dz = \int_0^{\lambda u} \sqrt{1 + A^2 k_u^4 z^2} \, dz$$

$$\approx \int_0^{\lambda u} \left(1 + \frac{1}{2} A^2 k_u^4 z^2 \right) \, dz$$
Electron Path Length

The displacement ds of the electron can be expressed in terms of the two coordinates, x and z as:

$$ds = \sqrt{(dx)^2 + (dz)^2} = \sqrt{1 + \left(\frac{dx}{dz}\right)^2} \, dz$$

Now calculate the length of the path traveled by the electron over one period of the undulator

$$S_{\lambda u} = \int_0^{\lambda u} \sqrt{1 + \left(\frac{dx}{dz}\right)^2} \, dz = \int_0^{\lambda u} \sqrt{1 + A^2 k_u^4 z^2} \, dz$$

$$\approx \int_0^{\lambda u} \left(1 + \frac{1}{2} A^2 k_u^4 z^2\right) \, dz = \left[z + \frac{1}{6} A^2 k_u^4 z^3\right]_0^{\lambda u}$$
Electron Path Length

\[S \lambda_u \approx \left[z + \frac{1}{6} A^2 k_u^4 z^3 \right]_0^\lambda_u \]
Electron Path Length

\[S \lambda_u \approx \left[z + \frac{1}{6} A^2 k_u^4 z^3 \right] \bigg|_0^{\lambda_u} \]

\[\approx \left(\lambda_u + \frac{1}{6} A^2 k_u^4 \lambda_u^3 \right) \]
Electron Path Length

$S\lambda_u \approx \left[z + \frac{1}{6} A^2 k_u^4 z^3 \right]_0^{\lambda_u}$

$\approx \left(\lambda_u + \frac{1}{6} A^2 k_u^4 \lambda_u^3 \right)$

$\approx \lambda_u \left(1 + \frac{1}{6} A^2 k_u^4 \lambda_u^2 \right)$
Electron Path Length

\[S\lambda_u \approx \left[z + \frac{1}{6} A^2 k_u^4 z^3 \right]_0^{\lambda_u} \]

\[\approx \left(\lambda_u + \frac{1}{6} A^2 k_u^4 \lambda_u^3 \right) \]

\[\approx \lambda_u \left(1 + \frac{1}{6} A^2 k_u^4 \lambda_u^2 \right) \]

\[\approx \lambda_u \left(1 + \frac{1}{6} A^2 k_u^4 \left(\frac{2\pi}{k_u} \right)^2 \right) \]
Electron Path Length

\[S \lambda_u \approx \left[z + \frac{1}{6} A^2 k_u^4 z^3 \right]^{\lambda_u}_0 \]

\[\approx \left(\lambda_u + \frac{1}{6} A^2 k_u^4 \lambda_u^3 \right) \]

\[\approx \lambda_u \left(1 + \frac{1}{6} A^2 k_u^4 \lambda_u^2 \right) \]

\[\approx \lambda_u \left(1 + \frac{1}{6} A^2 k_u^4 \left(\frac{2\pi}{k_u} \right)^2 \right) \]

\[\approx \lambda_u \left(1 + \frac{2\pi^2}{3} A^2 k_u^2 \right) \]
Electron Path Length

\[S\lambda_u \approx \left[z + \frac{1}{6} A^2 k^4 u z^3 \right]_0^{\lambda_u} \]

\[\approx \left(\lambda_u + \frac{1}{6} A^2 k^4 u \lambda_u^3 \right) \]

\[\approx \lambda_u \left(1 + \frac{1}{6} A^2 k^4 u \lambda_u^2 \right) \]

\[\approx \lambda_u \left(1 + \frac{1}{6} A^2 k^4 u \left(\frac{2\pi}{k_u} \right)^2 \right) \]

\[\approx \lambda_u \left(1 + \frac{2\pi^2}{3} A^2 k^2 u \right) \]

The textbook presents a different constant factor for the second term and we will proceed using that factor for simplicity.
Electron Path Length

\[S\lambda_u \approx \left[z + \frac{1}{6} A^2 k_u^4 z^3 \right]_0^{\lambda_u} \]
\[\approx \left(\lambda_u + \frac{1}{6} A^2 k_u^4 \lambda_u^3 \right) \]
\[\approx \lambda_u \left(1 + \frac{1}{6} A^2 k_u^4 \lambda_u^2 \right) \]
\[\approx \lambda_u \left(1 + \frac{1}{6} A^2 k_u^4 \left(\frac{2\pi}{k_u} \right)^2 \right) \]
\[\approx \lambda_u \left(1 + \frac{2\pi^2}{3} A^2 k_u^2 \right) \]

The textbook presents a different constant factor for the second term and we will proceed using that factor for simplicity.

\[S\lambda_u \approx \left(1 + \frac{1}{4} A^2 k_u^2 \right) \]
Electron Path Length

\[S\lambda_u \approx \left[z + \frac{1}{6}A^2k_u^4z^3 \right]_0 \]

\approx \left(\lambda_u + \frac{1}{6}A^2k_u^4\lambda_u^3 \right)

\approx \lambda_u \left(1 + \frac{1}{6}A^2k_u^4\lambda_u^2 \right)

\approx \lambda_u \left(1 + \frac{1}{6}A^2k_u^4 \left(\frac{2\pi}{k_u} \right)^2 \right)

\approx \lambda_u \left(1 + \frac{2\pi^2}{3}A^2k_u^2 \right)

The textbook presents a different constant factor for the second term and we will proceed using that factor for simplicity

\[S\lambda_u \approx \left(1 + \frac{1}{4}A^2k_u^2 \right) \]

Using the definition for the undulator parameter \(K = \gamma A k_u \), we have
The textbook presents a different constant factor for the second term and we will proceed using that factor for simplicity

\[S\lambda_u \approx \left(1 + \frac{1}{4} A^2 k_u^2 \right) \]

Using the definition for the undulator parameter \(K = \gamma Ak_u \), we have

\[S\lambda_u \approx \left(1 + \frac{1}{4} K^2 \right) \]
The K Parameter

Given the definition $K = \gamma A k_u$, we can rewrite the radius of curvature of the electron's path in the undulator as

$$\rho \approx \gamma K k u \approx \gamma \frac{mc}{eB_o} \approx \gamma K k u eB_o.$$
The K Parameter

Given the definition $K = \gamma A k_u$, we can rewrite the radius of curvature of the electron’s path in the undulator as

$$\rho = \frac{1}{Ak_u^2}$$
The K Parameter

Given the definition $K = \gamma A k_u$, we can rewrite the radius of curvature of the electron’s path in the undulator as

$$\rho = \frac{1}{Ak_u^2} \quad \rightarrow \quad \rho = \frac{\gamma}{Kk_u}$$
Given the definition $K = \gamma Ak_u$, we can rewrite the radius of curvature of the electron’s path in the undulator as

$$\rho = \frac{1}{Ak_u^2} \quad \rightarrow \quad \rho = \frac{\gamma}{Kk_u}$$

Recalling that the radius of curvature is related to the electron momentum by the Lorentz force, we have

For APS Undulator A, $\lambda u = 3.3\text{cm}$ and $B_o = 0.6\text{T}$ at closed gap, so $K = 0.934 \cdot 3.3\text{cm} \cdot 0.6\text{T} = 1.85$.

C. Segre (IIT)
The K Parameter

Given the definition $K = \gamma Ak_u$, we can rewrite the radius of curvature of the electron’s path in the undulator as

$$\rho = \frac{1}{Ak_u^2} \quad \rightarrow \quad \rho = \frac{\gamma}{Kk_u}$$

Recalling that the radius of curvature is related to the electron momentum by the Lorentz force, we have

$$p = \gamma mv$$
The K Parameter

Given the definition $K = \gamma Ak_u$, we can rewrite the radius of curvature of the electron's path in the undulator as

$$\rho = \frac{1}{Ak_u^2} \quad \rightarrow \quad \rho = \frac{\gamma}{Kk_u}$$

Recalling that the radius of curvature is related to the electron momentum by the Lorentz force, we have

$$p = \gamma mv \approx \gamma mc$$
The K Parameter

Given the definition $K = \gamma Ak_u$, we can rewrite the radius of curvature of the electron’s path in the undulator as

$$\rho = \frac{1}{Ak_u^2} \quad \rightarrow \quad \rho = \frac{\gamma}{Kk_u}$$

Recalling that the radius of curvature is related to the electron momentum by the Lorentz force, we have

$$p = \gamma mv \approx \gamma mc = \rho eB_o$$
The K Parameter

Given the definition $K = \gamma Ak_u$, we can rewrite the radius of curvature of the electron’s path in the undulator as

$$\rho = \frac{1}{Ak_u^2} \quad \rightarrow \quad \rho = \frac{\gamma}{Kk_u}$$

Recalling that the radius of curvature is related to the electron momentum by the Lorentz force, we have

$$p = \gamma mv \approx \gamma mc = \rho eB_o \quad \rightarrow \quad \gamma mc \approx \frac{\gamma}{Kk_u} eB_o$$
The K Parameter

Given the definition $K = \gamma Ak_u$, we can rewrite the radius of curvature of the electron's path in the undulator as

$$\rho = \frac{1}{Ak_u^2} \quad \rightarrow \quad \rho = \frac{\gamma}{Kk_u}$$

Recalling that the radius of curvature is related to the electron momentum by the Lorentz force, we have

$$p = \gamma mv \approx \gamma mc = \rho eB_o \quad \rightarrow \quad \gamma mc \approx \frac{\gamma}{Kk_u} eB_o$$

Combining the above expressions yields
The K Parameter

Given the definition $K = \gamma Ak_u$, we can rewrite the radius of curvature of the electron’s path in the undulator as

$$\rho = \frac{1}{Ak_u^2} \quad \rightarrow \quad \rho = \frac{\gamma}{Kk_u}$$

Recalling that the radius of curvature is related to the electron momentum by the Lorentz force, we have

$$p = \gamma mv \approx \gamma mc = \rho eB_o \quad \rightarrow \quad \gamma mc \approx \frac{\gamma}{Kk_u} eB_o$$

Combining the above expressions yields

$$K = \frac{eB_o}{mck_u}$$
The K Parameter

Given the definition $K = \gamma Ak_u$, we can rewrite the radius of curvature of the electron’s path in the undulator as

$$\rho = \frac{1}{Ak_u^2} \quad \rightarrow \quad \rho = \frac{\gamma}{Kk_u}$$

Recalling that the radius of curvature is related to the electron momentum by the Lorentz force, we have

$$p = \gamma mv \approx \gamma mc = \rho eB_o \quad \rightarrow \quad \gamma mc \approx \frac{\gamma}{Kk_u} eB_o$$

Combining the above expressions yields

$$K = \frac{eB_o}{mck_u} = \frac{eB_o}{2\pi mc} \lambda_u$$
The K Parameter

Given the definition $K = \gamma Ak_u$, we can rewrite the radius of curvature of the electron’s path in the undulator as

$$\rho = \frac{1}{Ak_u^2} \quad \rightarrow \quad \rho = \frac{\gamma}{Kk_u}$$

Recalling that the radius of curvature is related to the electron momentum by the Lorentz force, we have

$$p = \gamma mv \approx \gamma mc = \rho eB_o \quad \rightarrow \quad \gamma mc \approx \frac{\gamma}{Kk_u} eB_o$$

Combining the above expressions yields

$$K = \frac{eB_o}{mck_u} = \frac{eB_o}{2\pi mc} \lambda_u = 0.934\lambda_u[\text{cm}]B_o[\text{T}]$$

For APS Undulator A, $\lambda_u = 3.3\text{cm}$ and $B_o = 0.6\text{T}$ at closed gap, so $K = 1.85$.934 · 3.3[cm] · 0.6[T] = 1.85
The K Parameter

Given the definition $K = \gamma Ak_u$, we can rewrite the radius of curvature of the electron’s path in the undulator as

$$\rho = \frac{1}{Ak_u^2} \quad \rightarrow \quad \rho = \frac{\gamma}{Kk_u}$$

Recalling that the radius of curvature is related to the electron momentum by the Lorentz force, we have

$$p = \gamma mv \approx \gamma mc = \rho eB_o \quad \rightarrow \quad \gamma mc \approx \frac{\gamma}{Kk_u} eB_o$$

Combining the above expressions yields

$$K = \frac{eB_o}{mck_u} = \frac{eB_o}{2\pi mc} \lambda_u = 0.934\lambda_u[\text{cm}]B_o[\text{T}]$$

For APS Undulator A, $\lambda_u = 3.3\text{cm}$ and $B_o = 0.6\text{T}$ at closed gap, so
The K Parameter

Given the definition $K = \gamma Ak_u$, we can rewrite the radius of curvature of the electron’s path in the undulator as

$$\rho = \frac{1}{Ak_u^2} \quad \rightarrow \quad \rho = \frac{\gamma}{Kk_u}$$

Recalling that the radius of curvature is related to the electron momentum by the Lorentz force, we have

$$p = \gamma mv \approx \gamma mc = \rho eB_o \quad \rightarrow \quad \gamma mc \approx \frac{\gamma}{Kk_u}eB_o$$

Combining the above expressions yields

$$K = \frac{eB_o}{mck_u} = \frac{eB_o}{2\pi mc} \lambda_u = 0.934\lambda_u[\text{cm}]B_o[\text{T}]$$

For APS Undulator A, $\lambda_u = 3.3\text{cm}$ and $B_o = 0.6\text{T}$ at closed gap, so

$$K = 0.934 \cdot 3.3[\text{cm}] \cdot 0.6[\text{T}]$$
The K Parameter

Given the definition $K = \gamma Ak_u$, we can rewrite the radius of curvature of the electron’s path in the undulator as

$$\rho = \frac{1}{Ak_u^2} \quad \rightarrow \quad \rho = \frac{\gamma}{Kk_u}$$

Recalling that the radius of curvature is related to the electron momentum by the Lorentz force, we have

$$p = \gamma mv \approx \gamma mc = \rho eB_o \quad \rightarrow \quad \gamma mc \approx \frac{\gamma}{Kk_u} eB_o$$

Combining the above expressions yields

$$K = \frac{eB_o}{mcKk_u} = \frac{eB_o}{2\pi mc} \lambda_u = 0.934\lambda_u[\text{cm}]B_o[\text{T}]$$

For APS Undulator A, $\lambda_u = 3.3\text{cm}$ and $B_o = 0.6\text{T}$ at closed gap, so

$$K = 0.934 \cdot 3.3[\text{cm}] \cdot 0.6[\text{T}] = 1.85$$