Types of X-ray Detectors

- Gas detectors
 - Ionization chamber
 - Proportional counter
 - Geiger-Muller tube

- Scintillation counters

- Solid state detectors
 - Intrinsic semiconductor
 - P-I-N junction
 - Silicon drift

- Charge coupled device detectors
 - Indirect
 - Direct coupled
Types of X-ray Detectors

Gas detectors
Types of X-ray Detectors

Gas detectors

Scintillation counters
Types of X-ray Detectors

Gas detectors

Scintillation counters
Solid state detectors
Types of X-ray Detectors

Gas detectors

Scintillation counters
Solid state detectors

Charge coupled device detectors
Types of X-ray Detectors

Gas detectors
 • Ionization chamber

Scintillation counters
Solid state detectors

Charge coupled device detectors
Types of X-ray Detectors

Gas detectors
- Ionization chamber
- Proportional counter

Scintillation counters
Solid state detectors

Charge coupled device detectors
Types of X-ray Detectors

Gas detectors
- Ionization chamber
- Proportional counter
- Geiger-Muller tube

Scintillation counters

Solid state detectors
- Intrinsic semiconductor
- P-I-N junction
- Silicon drift

Charge coupled device detectors
Types of X-ray Detectors

Gas detectors
- Ionization chamber
- Proportional counter
- Geiger-Muller tube

Scintillation counters

Solid state detectors
- Intrinsic semiconductor

Charge coupled device detectors
Types of X-ray Detectors

Gas detectors
- Ionization chamber
- Proportional counter
- Geiger-Muller tube

Scintillation counters

Solid state detectors
- Intrinsic semiconductor
- P-I-N junction

Charge coupled device detectors
Types of X-ray Detectors

Gas detectors
- Ionization chamber
- Proportional counter
- Geiger-Muller tube

Scintillation counters

Solid state detectors
- Intrinsic semiconductor
- P-I-N junction
- Silicon drift

Charge coupled device detectors
Types of X-ray Detectors

Gas detectors
- Ionization chamber
- Proportional counter
- Geiger-Muller tube

Scintillation counters

Solid state detectors
- Intrinsic semiconductor
- P-I-N junction
- Silicon drift

Charge coupled device detectors
- Indirect
Types of X-ray Detectors

Gas detectors
- Ionization chamber
- Proportional counter
- Geiger-Muller tube

Scintillation counters

Solid state detectors
- Intrinsic semiconductor
- P-I-N junction
- Silicon drift

Charge coupled device detectors
- Indirect
- Direct coupled
Ionization Chamber

Useful for beam monitoring, flux measurement, fluorescence measurement, spectroscopy.
Ionization Chamber

Useful for beam monitoring, flux measurement, fluorescence measurement, spectroscopy.

- Closed (or sealed) chamber of length L with gas mixture $\mu = \sum \rho_i \mu_i$

$\mu = \sum \rho_i \mu_i$
Ionization Chamber

Useful for beam monitoring, flux measurement, fluorescence measurement, spectroscopy.

- Closed (or sealed) chamber of length L with gas mixture
 \[\mu = \sum \rho_i \mu_i \]
- High voltage applied to plates

\[I / I_o = e^{-\mu L} \]
Ionization Chamber

Useful for beam monitoring, flux measurement, fluorescence measurement, spectroscopy.

- Closed (or sealed) chamber of length L with gas mixture
 $$\mu = \sum \rho_i \mu_i$$
- High voltage applied to plates
- Calculate fraction of beam absorbed
 $$\frac{I}{I_o} = e^{-\mu L}$$

When x-ray interacts with gas atom, photoionized electrons swept rapidly to positive electrode and current (nano Amperes) is measured.

Count rates up to 10^{11} photons/s/cm3

22-41 eV per electron-hole pair (depending on the gas) makes this useful for quantitative measurements.
Ionization Chamber

Useful for beam monitoring, flux measurement, fluorescence measurement, spectroscopy.

- Closed (or sealed) chamber of length L with gas mixture $\mu = \sum \rho_i \mu_i$
- High voltage applied to plates
- Calculate fraction of beam absorbed $I/I_o = e^{-\mu L}$

- When x-ray interacts with gas atom, photoionized electrons swept rapidly to positive electrode and current (nano Amperes) is measured.
Ionization Chamber

Useful for beam monitoring, flux measurement, fluorescence measurement, spectroscopy.

- Closed (or sealed) chamber of length L with gas mixture
 \[\mu = \sum \rho_i \mu_i \]
- High voltage applied to plates
- Calculate fraction of beam absorbed $I/I_0 = e^{-\mu L}$

- When x-ray interacts with gas atom, photoionized electrons swept rapidly to positive electrode and current (nano Amperes) is measured.
- Count rates up to 10^{11} photons/s/cm3
Ionization Chamber

Useful for beam monitoring, flux measurement, fluorescence measurement, spectroscopy.

- Closed (or sealed) chamber of length L with gas mixture $\mu = \sum \rho_i \mu_i$
- High voltage applied to plates
- Calculate fraction of beam absorbed $I/I_o = e^{-\mu L}$

- When x-ray interacts with gas atom, photoionized electrons swept rapidly to positive electrode and current (nano Amperes) is measured.
- Count rates up to 10^{11} photons/s/cm3
- 22-41 eV per electron-hole pair (depending on the gas) makes this useful for quantitative measurements.
Scintillation Counter

Useful for photon counting experiments

- NaI(Tl), Yttrium Aluminum Perovskite (YAP) or plastic which absorb x-rays and fluoresce in the visible spectrum.
- Light strikes a thin photocathode which emits electrons into the vacuum portion of a photomultiplier tube.
- Photoelectrons are accelerated in steps, striking dynodes and becoming amplified.
- Output voltage pulse is proportional to initial x-ray energy.
Scintillation Counter

Useful for photon counting experiments

- NaI(Tl), Yttrium Aluminum Perovskite (YAP) or plastic which, absorb x-rays and fluoresce in the visible spectrum.
Scintillation Counter

Useful for photon counting experiments

- NaI(Tl), Yttrium Aluminum Perovskite (YAP) or plastic which absorb x-rays and fluoresce in the visible spectrum.
- Light strikes a thin photocathode which emits electrons into the vacuum portion of a photomultiplier tube.
Scintillation Counter

Useful for photon counting experiments

- NaI(Tl), Yttrium Aluminum Perovskite (YAP) or plastic which absorb x-rays and fluoresce in the visible spectrum.
- Light strikes a thin photocathode which emits electrons into the vacuum portion of a photomultiplier tube.
- Photoelectrons are accelerated in steps, striking dynodes and becoming amplified.
Scintillation Counter

Useful for photon counting experiments

- NaI(Tl), Yttrium Aluminum Perovskite (YAP) or plastic which absorb x-rays and fluoresce in the visible spectrum.
- Light strikes a thin photocathode which emits electrons into the vacuum portion of a photomultiplier tube.
- Photoelectrons are accelerated in steps, striking dynodes and becoming amplified.
- Output voltage pulse is proportional to initial x-ray energy.
Open circuit p-n junction has a natural depletion region
Open circuit p-n junction has a natural depletion region

When reverse biased, the depletion region grows
Open circuit p-n junction has a natural depletion region

When reverse biased, the depletion region grows creating a higher electric field near the junction
Ge Detector Operation

The diagram shows a Ge detector with a depletion region. A gamma (γ) ray enters the detector, creating a hole (h) and an electron (e) in the depletion region. These charge carriers are then collected by the electric field, with the hole moving towards the positive (+) end and the electron towards the negative (-) end.
Silicon Drift Detector

Same principle as intrinsic or p-i-n detector but much more compact and operates at higher temperatures

Relatively low stopping power is a drawback
Absorption of x-ray photon in Silicon produces multiple electron-hole pairs.
CCD Detectors - Indirect

X-Ray Photon → Phosphor

Visible photons emitted in all directions → CCD detects visible photons
Visible photons emitted by phosphor

X-Ray photon

Phosphor coating on fibre optic

Only a fraction of the photons emitted by the phosphor will propagate down the fibre optic and be detected by the CCD

Fibre Optic

CCD