How to Make a Fresnel Lens

The ideal refracting lens has a parabolic shape but this is impractical to make.
How to Make a Fresnel Lens

The ideal refracting lens has a parabolic shape but this is impractical to make.

\[h(x) = \Lambda \left(\frac{x}{\sqrt{2\lambda_0 f}} \right)^2 \]
How to Make a Fresnel Lens

The ideal refracting lens has a parabolic shape but this is impractical to make.

\[h(x) = \Lambda \left(\frac{x}{\sqrt{2\lambda_0 f}} \right)^2 \]

when \(h(x) = 100\Lambda \sim 1000\mu m \)
How to Make a Fresnel Lens

The ideal refracting lens has a parabolic shape but this is impractical to make.

\[h(x) = \Lambda \left(\frac{x}{\sqrt{2\lambda_o f}} \right)^2 \]

when \(h(x) = 100\Lambda \sim 1000\mu m \)

\[x = 10\sqrt{2\lambda_o f} \sim 100\mu m \]
How to Make a Fresnel Lens

The ideal refracting lens has a parabolic shape but this is impractical to make.

\[h(x) = \Lambda \left(\frac{x}{\sqrt{2}\lambda_o f} \right)^2 \]

when \(h(x) = 100\Lambda \sim 1000\mu m \)

\[x = 10\sqrt{2}\lambda_o f \sim 100\mu m \]

aspect ratio too large for a stable structure and absorption would be too large!
Mark off the longitudinal zones (of thickness Λ) where the waves inside and outside the material are in phase.
Mark off the longitudinal zones (of thickness Λ) where the waves inside and outside the material are in phase.

Each block of thickness Λ serves no purpose for refraction but only attenuates the wave.
Mark off the longitudinal zones (of thickness Λ) where the waves inside and outside the material are in phase.

Each block of thickness Λ serves no purpose for refraction but only attenuates the wave.

This material can be removed and the remaining material collapsed to produce a Fresnel lens which has the same optical properties as the parabolic lens as long as $f \gg N\Lambda$ where N is the number of zones.
The outermost zones become very small and thus limit the overall aperture of the zone plate. The dimensions of outermost zone, \(N \) can be calculated by first defining a scaled height and lateral dimension.
The outermost zones become very small and thus limit the overall aperture of the zone plate. The dimensions of outermost zone, N can be calculated by first defining a scaled height and lateral dimension

$$
\nu = \frac{h(x)}{\Lambda}
$$
The outermost zones become very small and thus limit the overall aperture of the zone plate. The dimensions of outermost zone, N can be calculated by first defining a scaled height and lateral dimension

$$\nu = \frac{h(x)}{\Lambda} \quad \xi = \frac{x}{\sqrt{2\lambda_0 f}}$$
The outermost zones become very small and thus limit the overall aperture of the zone plate. The dimensions of outermost zone, \(N \) can be calculated by first defining a scaled height and lateral dimension

\[
\nu = \frac{h(x)}{\Lambda} \quad \xi = \frac{x}{\sqrt{2\lambda_0 f}}
\]

Since \(\nu = \xi^2 \), the position of the \(N^{th} \) zone is \(\xi_N = \sqrt{N} \) and the scaled width of the \(N^{th} \) (outermost) zone is
The outermost zones become very small and thus limit the overall aperture of the zone plate. The dimensions of outermost zone, N can be calculated by first defining a scaled height and lateral dimension

$$\nu = \frac{h(x)}{\Lambda} \quad \xi = \frac{x}{\sqrt{2\lambda_0 f}}$$

Since $\nu = \xi^2$, the position of the N^{th} zone is $\xi_N = \sqrt{N}$ and the scaled width of the N^{th} (outermost) zone is

$$\Delta\xi_N = \xi_N - \xi_{N-1} = \sqrt{N} - \sqrt{N-1}$$
\[\Delta \xi_N = \xi_N - \xi_{N-1} = \sqrt{N} - \sqrt{N - 1} \]
The diameter of the entire lens is thus

\[2\Delta \xi_N = 2\sqrt{N} \approx \frac{1}{2} \Delta \xi_N N \]
Fresnel Lens Dimensions

\[\Delta \xi_N = \xi_N - \xi_{N-1} = \sqrt{N} - \sqrt{N - 1} \]

\[= \sqrt{N} \left(1 - \sqrt{1 - \frac{1}{N}} \right) \]

\[\approx \sqrt{N} \left(1 - \left[1 - \frac{1}{2N} \right] \right) \]
\[\Delta \xi_N = \xi_N - \xi_{N-1} = \sqrt{N} - \sqrt{N - 1} = \sqrt{N} \left(1 - \sqrt{1 - \frac{1}{N}}\right) \approx \sqrt{N} \left(1 - \left[1 - \frac{1}{2N}\right]\right) \]

\[\Delta \xi_N \approx \frac{1}{2\sqrt{N}} \]
\[\Delta \xi_N = \xi_N - \xi_{N-1} = \sqrt{N} - \sqrt{N-1} \]

\[= \sqrt{N} \left(1 - \sqrt{1 - \frac{1}{N}} \right) \]

\[\approx \sqrt{N} \left(1 - \left[1 - \frac{1}{2N} \right] \right) \]

\[\Delta \xi_N \approx \frac{1}{2\sqrt{N}} \]

The diameter of the entire lens is thus

\[2\xi_N = 2\sqrt{N} = \frac{1}{\Delta \xi_N} \]
In terms of the unscaled variables

$$\Delta x_N = \Delta \xi_N \sqrt{2\lambda_o f}$$
Fresnel Lens Example

In terms of the unscaled variables

\[\Delta x_N = \Delta \xi_N \sqrt{2\lambda_o f} = \sqrt{\frac{\lambda_o f}{2N}} \]
Fresnel Lens Example

In terms of the unscaled variables

\[\Delta x_N = \Delta \xi_N \sqrt{2 \lambda_o f} = \sqrt{\frac{\lambda_o f}{2N}} \]

\[d_N = 2 \xi_N \]
In terms of the unscaled variables

\[\Delta x_N = \Delta \xi_N \sqrt{2\lambda_o f} = \sqrt{\frac{\lambda_o f}{2N}} \]

\[d_N = 2\xi_N = \frac{\sqrt{2\lambda_o f}}{\Delta \xi_N} \]
Fresnel Lens Example

In terms of the unscaled variables

\[\Delta x_N = \Delta \xi_N \sqrt{2 \lambda_o f} = \sqrt{\frac{\lambda_o f}{2N}} \]

\[d_N = 2\xi_N = \frac{\sqrt{2 \lambda_o f}}{\Delta \xi_N} = 2\sqrt{N} \sqrt{2 \lambda_o f} = \sqrt{2N \lambda_o f} \]
Fresnel Lens Example

In terms of the unscaled variables

\[\Delta x_N = \Delta \xi_N \sqrt{2\lambda_o f} = \sqrt{\frac{\lambda_o f}{2N}} \]

\[d_N = 2\xi_N = \frac{\sqrt{2\lambda_o f}}{\Delta \xi_N} = 2\sqrt{N} \sqrt{2\lambda_o f} = \sqrt{2N\lambda_o f} \]

If we take

\[\lambda_o = 1\text{Å} = 1 \times 10^{-10}\text{m} \]
\[f = 50\text{cm} = 0.5\text{m} \]
\[N = 100 \]
Fresnel Lens Example

In terms of the unscaled variables

\[\Delta x_N = \Delta \xi_N \sqrt{2\lambda_o f} = \sqrt{\frac{\lambda_o f}{2N}} \]

\[d_N = 2\xi_N = \frac{\sqrt{2\lambda_o f}}{\Delta \xi_N} = 2\sqrt{N\sqrt{2\lambda_o f}} = \sqrt{2N\lambda_o f} \]

If we take

\[\lambda_o = 1\text{Å} = 1 \times 10^{-10}\text{m} \]
\[f = 50\text{cm} = 0.5\text{m} \]
\[N = 100 \]

\[\Delta x_N = 5 \times 10^{-7}\text{m} \]
Fresnel Lens Example

In terms of the unscaled variables

\[
\Delta x_N = \Delta \xi_N \sqrt{2 \lambda_o f} = \sqrt{\frac{\lambda_o f}{2N}}
\]

\[
d_N = 2\xi_N = \frac{\sqrt{2\lambda_o f}}{\Delta \xi_N} = 2\sqrt{N} \sqrt{2\lambda_o f} = \sqrt{2N\lambda_o f}
\]

If we take

\[
\lambda_o = 1\text{Å} = 1 \times 10^{-10}\text{m}
\]

\[
f = 50\text{cm} = 0.5\text{m}
\]

\[
N = 100
\]

\[
\Delta x_N = 5 \times 10^{-7}\text{m} \quad d_N = 2 \times 10^{-4}\text{m} = 100\mu\text{m}
\]
The specific shape required for a zone plate is difficult to fabricate, consequently, it is convenient to approximate the nearly triangular zones with a rectangular profile.
The specific shape required for a zone plate is difficult to fabricate, consequently, it is convenient to approximate the nearly triangular zones with a rectangular profile.

In practice, since the outermost zones are very small, zone plates are generally fabricated as alternating zones (rings for 2D) of materials with a large Z-contrast, such as Au/Si or W/C.
Making a Fresnel Zone Plate

The specific shape required for a zone plate is difficult to fabricate, consequently, it is convenient to approximate the nearly triangular zones with a rectangular profile.

In practice, since the outermost zones are very small, zone plates are generally fabricated as alternating zones (rings for 2D) of materials with a large Z-contrast, such as Au/Si or W/C.

This kind of zone plate is not as efficient as a true Fresnel lens would be in the x-ray regime. Nevertheless, efficiencies up to 35% have been achieved.
The shape of an ideal mirror is an ellipse, where any ray coming from one focus will be projected to the second focus.
Tangential Focusing Mirror

The shape of an ideal mirror is an ellipse, where any ray coming from one focus will be projected to the second focus. Consider a 1:1 focusing mirror. For an ellipse the sum of the distances from any point on the ellipse to the foci is a constant.

\[F_1 P + F_2 P = 2a \]
Tangential Focusing Mirror

The shape of an ideal mirror is an ellipse, where any ray coming from one focus will be projected to the second focus. Consider a 1:1 focusing mirror. For an ellipse the sum of the distances from any point on the ellipse to the foci is a constant.

$$F_1P + F_2P = 2a$$

$$F_1B = F_2B = a$$
Tangential Focusing Mirror

The shape of an ideal mirror is an ellipse, where any ray coming from one focus will be projected to the second focus. Consider a 1:1 focusing mirror. For an ellipse the sum of the distances from any point on the ellipse to the foci is a constant.

\[F_1 P + F_2 P = 2a \]

\[F_1 B = F_2 B = a \]

\[\sin \theta = \frac{b}{a} \]
The shape of an ideal mirror is an ellipse, where any ray coming from one focus will be projected to the second focus. Consider a 1:1 focusing mirror. For an ellipse the sum of the distances from any point on the ellipse to the foci is a constant.

\[F_1P + F_2P = 2a \]

\[F_1B = F_2B = a \]

\[\sin \theta = \frac{b}{a} \]
Tangential Focusing Mirror

The shape of an ideal mirror is an ellipse, where any ray coming from one focus will be projected to the second focus. Consider a 1:1 focusing mirror. For an ellipse the sum of the distances from any point on the ellipse to the foci is a constant.

\[F_1P + F_2P = 2a \]

\[F_1B = F_2B = a \]

\[\sin \theta = \frac{b}{a} \]
Tangential Focusing Mirror

The shape of an ideal mirror is an ellipse, where any ray coming from one focus will be projected to the second focus. Consider a 1:1 focusing mirror. For an ellipse the sum of the distances from any point on the ellipse to the foci is a constant.

\[F_1P + F_2P = 2a \]

\[F_1B = F_2B = a \]

\[\sin \theta = \frac{b}{a} = \frac{b}{2f} \]
Sagittal Focusing Mirror

Ellipses are hard figures to make, so usually, they are approximated by circles. In the case of sagittal focusing, an ellipsoid of revolution with diameter $2b$, is used for focusing.

\[
\rho_{\text{sagittal}} = b = 2f \sin \theta
\]

The tangential focus is also usually approximated by a circular cross-section with radius \[
\rho_{\text{tangential}} = a = 2f \sin \theta
\]
Ellipses are hard figures to make, so usually, they are approximated by circles. In the case of saggital focusing, an ellipsoid of revolution with diameter $2b$, is used for focusing.

\[\rho_{saggital} = b = 2f \sin \theta \]
Ellipses are hard figures to make, so usually, they are approximated by circles. In the case of sagittal focusing, an ellipsoid of revolution with diameter $2b$, is used for focusing.

$$\rho_{saggital} = b = 2f \sin \theta$$

The tangential focus is also usually approximated by a circular cross-section with radius
Ellipses are hard figures to make, so usually, they are approximated by circles. In the case of saggital focusing, an ellipsoid of revolution with diameter $2b$, is used for focusing.

\[\rho_{saggital} = b = 2f \sin \theta \]

The tangential focus is also usually approximated by a circular cross-section with radius

\[\rho_{tangential} = a = \frac{2f}{\sin \theta} \]