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Diffraction Grating

An N period undulator is basically like a diffraction grating, only in the
time domain rather than the space domain.
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Geometric Series

The sum is simply a geometric series, Sy with k = e’2™
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Intensity from a Diffraction Grating

i2me

Restoring the expression for k = €™, we have:
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Intensity from a Diffraction Grating
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Intensity from a Diffraction Grating
Restoring the expression for k = e/?™, we have:
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Intensity from a Diffraction Grating

Restoring the expression for k = e/?™, we have:
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Intensity from a Diffraction Grating
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Beam Coherence

An N period undulator is basically like a diffraction grating, only in the
time domain rather than the space domain.
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Beam Coherence
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Beam Coherence

An N period undulator is basically like a diffraction grating, only in the
time domain rather than the space domain.

2ne=10"
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Beam Coherence

An N period undulator is basically like a diffraction grating, only in the
time domain rather than the space domain.
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Beam Coherence

An N period undulator is basically like a diffraction grating, only in the
time domain rather than the space domain.
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Beam Coherence

An N period undulator is basically like a diffraction grating, only in the
time domain rather than the space domain.
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Beam Coherence

An N period undulator is basically like a diffraction grating, only in the
time domain rather than the space domain.
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Beam Coherence

An N period undulator is basically like a diffraction grating, only in the
time domain rather than the space domain.
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Beam Coherence
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Beam Coherence

An N period undulator is basically like a diffraction grating, only in the
time domain rather than the space domain.
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Beam Coherence

An N period undulator is basically like a diffraction grating, only in the

time domain rather than the space domain.

2ne=45

Intensity (arb units)
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Undulator Coherence
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APS Parameters

Table 1: APS SR Beam Stability Requirement Evolution

Parameter | Units | RMS Beam Size and stability requirement
(5 % of beam dimensions) at IDs in year
1995 2001 2005
Gy um 334 352 280
X 16.7 17.6 14
Oy urad 24 22 11.6
x’ 1.2 1.1 0.58
Gy um 89 18.4 9.1
y 445 0.92 0.45
Oy urad 8.9 4.2 3.0
y’ 0.45 0.21 0.15
Eeff e 8 7.7 32
rad
Coupling % 10.0 1.0 0.9
C. Segre (lIT) PHYS 570 - Spring 2012 January 26, 2012
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APS Emittance

For photon emission from a single electron in a 2m undulator at 1A
oy = 4—L7T/\ =1.3um o = \/% = 7.1urad
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The current APS parameters are
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emission from entire beam (in
vertical direction)
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APS Emittance

For photon emission from a single electron in a 2m undulator at 1A
oy = 4—L7T/\ =1.3um o = \/% = 7.1urad

The current APS parameters are

must convolute to get photon
emission from entire beam (in
vertical direction)

y
% o, =9.1um o, = 3.0urad

L / _
O radiation = 9.1pum O radiation — 7. 7Turad
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Synchrotron Time Structure
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Free Electron Laser
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Free Electron Laser

e Initial electron cloud, each
T l T l T electron emits coherently but

independently
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Free Electron Laser

e Initial electron cloud, each
T l T l T electron emits coherently but

independently

- e Over course of 100 m, electric
field of photons, feeds back on
electron bunch

e Microbunches form with period
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Free Electron Laser

HERR
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C. Segre (IIT)

Initial electron cloud, each
electron emits coherently but
independently

Over course of 100 m, electric
field of photons, feeds back on
electron bunch

Microbunches form with period
of FEL (and radiation in
electron frame)

Each microbunch emits

coherently with neighboring
ones
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FEL Emission
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FEL Layout
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Compact Sources
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Types of X-ray Detectors
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Types of X-ray Detectors

Gas detectors
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Types of X-ray Detectors
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Scintillation counters
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Types of X-ray Detectors

Gas detectors
e |onization chamber

e Proportional counter

Scintillation counters
Solid state detectors
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Types of X-ray Detectors

Gas detectors
e lonization chamber
e Proportional counter
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Types of X-ray Detectors

Gas detectors
e lonization chamber
e Proportional counter
e Geiger-Muller tube

Scintillation counters
Solid state detectors

e Intrinsic semiconductor

Charge coupled device detectors
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Types of X-ray Detectors

Gas detectors
e lonization chamber
e Proportional counter
e Geiger-Muller tube

Scintillation counters
Solid state detectors

e Intrinsic semiconductor
e P-I-N junction
e Silicon drift
Charge coupled device detectors
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Types of X-ray Detectors

Gas detectors
e lonization chamber
e Proportional counter
e Geiger-Muller tube

Scintillation counters
Solid state detectors

e Intrinsic semiconductor
e P-I-N junction
e Silicon drift
Charge coupled device detectors

e Indirect
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Types of X-ray Detectors

Gas detectors
e lonization chamber
e Proportional counter
e Geiger-Muller tube

Scintillation counters
Solid state detectors

e Intrinsic semiconductor
e P-I-N junction
e Silicon drift
Charge coupled device detectors
e Indirect

e Direct coupled
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Gas Detector Curve
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lonization Chamber

Useful for beam monitoring, flux measurement, fluorescence measurement,
spectroscopy.

-V e When x-ray interacts with gas

atom, photoionized electrons
swept rapidly to positive
electrode and current (nano
Amperes) is measured.

e Count rates up to 101!

e Closed (or sealed) chamber of photons/s/Cm3

length L with gas mixture
=" pini e 22-41 eV per electron-hole

pair (depending on the gas)
makes this useful for
quantitative measurements.

e High voltage applied to plates

e Calculate fraction of beam
absorbed //1, = e7#t
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Scintillation Counter

Useful for photon counting experiments

Photocathode Anode
Electrons
Incident | Electrical
J
Light

photon j connectors
photon Focusing Dynode

\/\ Scintillator
electrode Photomult|pller tube (PMT)
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e Nal(TI), Yttrium Aluminum Perovskite (YAP) or plastic which,
absorb x-rays and fluoresce in the visible spectrum.
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Scintillation Counter

Useful for photon counting experiments

Photocathode Anode
/ Electrons
Incident Electrical

photon d connectors
NG Scintillator o—\ o$\ \

| 1
Light Focusin
hoton g Dynode
3 electrode Photomult|p|ler tube (PMT)

e Nal(TI), Yttrium Aluminum Perovskite (YAP) or plastic which,
absorb x-rays and fluoresce in the visible spectrum.

e Light strikes a thin photocathode which emits electrons into the
vacuum portion of a photomultiplier tube.

e Photoelectrons are accelerated in steps, striking dynodes and
becoming amplified.

e Output voltage pulse is proportional to initial x-ray energy.
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Solid State Detectors

Open circuit p-n junction has a natural depletion region

p n

depletion region
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Solid State Detectors

Open circuit p-n junction has a natural depletion region

p n P n

depletion region depletion region

|+
|

1
v

When reverse biased, the depletion region grows
creating a higher electric field near the junction
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Ge Detector Operation

depletion region
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Silicon Drift Detector

Same principle as intrinsic or p-i-n detector but much more compact and

operates at higher temperatures

field strips

s
integrated FET g
— -V —

L
=
=
—
= \
=

\\

| CC e
° path of
n- silicon ebg electrons
\\\p+

back contact

Relatively low stopping power is a drawback
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