Design and Test Results of Kicker Units for the Positron Accumulator Ring at the APS

Nicole Neveu
Overview

- What is a kicker?
- Why do synchrotrons need them?
- Kickers at the APS
- Positron vs. Electron Kicker

Kicker prototype at the APS [1]
What is a kicker magnet?

- A strong field is used to ‘kick’ the beam in another direction.

- Kickers redirect the beam
 - Injection
 - Extraction

- Coiled wire
 - used to create magnets

\[F = q(E + v \times B) \]

\[F = (BlI)n \]
Why do synchrotrons need kickers?
Kickers at the APS

- Three main components to kicker system:
 - Magnets
 - Pulse Forming Network
 - Power Supply

Circuit diagram of the kicker unit [1]
Window-frame Magnets

- CMD5005 ferrite
- \(L = 844.8 \text{ nH (coils)} \)
 - Based on geometry
 - Inductance too high for specifications
- Coils are divided to reduce \(L \)
 - Half turn & longitudinally
 - 4 magnet sections

\[
T_r = \frac{\pi \sqrt{L_{1/2}C}}{8}
\]
Pulse Forming Network (PFN)

- Triaxial cables AA7949
 - $Z_0 = 14 \ \Omega$
 - $v_p = 0.16 \ m/\text{ns}$
 - 8/9 m long
 - trimmed during testing
- $C = 1.72 \ nF$
 - Rated for 50 kV
 - Chosen first because industry limited
 - Each half turn magnet divided into sections by lumped capacitors
Test Results

Prototype Issues

- Rise and fall time of magnetic field too long.

- Inductance of connections greater than expected.

- Magnetic coupling between adjacent magnet sections.

Solutions

- **Rise time:**
 - Added capacitor, \(C_t = 4.7\, \text{nF} \)
 - Shortened PFN cables (8m)

- **Fall time:**
 - Capacitor value at output of magnet tripled

Prototype Issues

Solutions

- Rise time:
 - Added capacitor, \(C_t = 4.7\, \text{nF} \)
 - Shortened PFN cables (8m)

- Fall time:
 - Capacitor value at output of magnet tripled

![Magnetic field of extraction kicker [1]](image1)

![Magnetic field of injection kicker [1]](image2)
Final Results

<table>
<thead>
<tr>
<th>Simulation Specifications</th>
<th>Test Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prototype</td>
</tr>
<tr>
<td>Rise time</td>
<td>0 – 100%</td>
</tr>
<tr>
<td></td>
<td>20 – 100%</td>
</tr>
<tr>
<td>Fall time</td>
<td>94 – 50%</td>
</tr>
<tr>
<td>Flat top</td>
<td>3% flat</td>
</tr>
<tr>
<td>Ringing</td>
<td>% of peak</td>
</tr>
<tr>
<td>Field strength</td>
<td>283/435 G</td>
</tr>
</tbody>
</table>

Rise time: 0 – 100% < 190 ns 120 ns 160 ns 142 ns 120 ns 160 ns 142 ns 98 ns 88 ns

Fall time: 94 – 50% <70 ns 200 ns 70 ns n/a 200 ns 70 ns n/a

Flat top: 3% flat >35 ns 60 ns 46 ns

Ringing: % of peak <30% ns 26% n/a 26% n/a

Field strength: 283/435 G ~450 G ~500

Simulation Specifications	Test Results
Rise time | Prototype | Injection | Extraction
--- | --- | --- | ---
0 – 100% | < 190 ns | 120 ns | 160 ns | 142 ns
20 – 100% | <100 ns | 98 ns | 88 ns |
Fall time | 94 – 50% | <70 ns | 200 ns | 70 ns | n/a
Flat top | 3% flat | >35 ns | 60 ns | 46 ns |
Ringing | % of peak | <30% ns | 26% | n/a |
Field strength | 283/435 G | ~450 G | ~500 |
Positron vs. Electron kickers

- Positron (+)
- Electron (-)

- Need to switch direction of B/I
- Switch leads on magnets

http://www.physbot.co.uk/magnetic-fields-and-induction.html
References

thank you!