Term: Spring 2018
Meetings: Tuesday & Thursday 13:50-15:05
Location: 213 Stuart Building

Instructor: Carlo Segre
Office: 136A Life Sciences
Phone: 312.567.3498
e-mail: segre@iit.edu

Web Site: http://csrri.iit.edu/~segre/phys570/18S
Course objectives

- Understand the means of production of synchrotron x-ray radiation
Course objectives

• Understand the means of production of synchrotron x-ray radiation

• Understand the function of various components of a synchrotron beamline
Course objectives

• Understand the means of production of synchrotron x-ray radiation

• Understand the function of various components of a synchrotron beamline

• Be able to perform calculations in support of a synchrotron experiment
Course objectives

• Understand the means of production of synchrotron x-ray radiation

• Understand the function of various components of a synchrotron beamline

• Be able to perform calculations in support of a synchrotron experiment

• Understand the physics behind a variety of experimental techniques
Course objectives

• Understand the means of production of synchrotron x-ray radiation
• Understand the function of various components of a synchrotron beamline
• Be able to perform calculations in support of a synchrotron experiment
• Understand the physics behind a variety of experimental techniques
• Be able to make an oral presentation of a synchrotron radiation research topic
Course objectives

• Understand the means of production of synchrotron x-ray radiation

• Understand the function of various components of a synchrotron beamline

• Be able to perform calculations in support of a synchrotron experiment

• Understand the physics behind a variety of experimental techniques

• Be able to make an oral presentation of a synchrotron radiation research topic

• Be able to write a General User Proposal in the format used by the Advanced Photon Source
Course syllabus

• Focus on applications of synchrotron radiation
Course syllabus

- Focus on applications of synchrotron radiation
- Homework assignments

- In-class student presentations on research topics
- Choose a research article which features a synchrotron technique
- Timetable will be posted
- Final project - writing a General User Proposal
- Start thinking about a suitable project right away
- Make proposal and get approval before starting
- Visits to Advanced Photon Source (outside class, not required)
 - All students who plan to attend will need to request badges from APS
 - Use MRCAT (Sector 10) as location of experiment
 - Use Carlo Segre as local contact
 - State that your beamtime will be in the second week of March
Course syllabus

- Focus on applications of synchrotron radiation
- Homework assignments
- In-class student presentations on research topics
 - Choose a research article which features a synchrotron technique
 - Timetable will be posted
Course syllabus

- Focus on applications of synchrotron radiation
- Homework assignments
- In-class student presentations on research topics
 - Choose a research article which features a synchrotron technique
 - Timetable will be posted
- Final project - writing a General User Proposal
 - Start thinking about a suitable project right away
 - Make proposal and get approval before starting

Visits to Advanced Photon Source (outside class, not required)
- All students who plan to attend will need to request badges from APS
- Use MRCAT (Sector 10) as location of experiment
- Use Carlo Segre as local contact
- State that your beamtime will be in the second week of March
Course syllabus

- Focus on applications of synchrotron radiation
- Homework assignments
- In-class student presentations on research topics
 - Choose a research article which features a synchrotron technique
 - Timetable will be posted
- Final project - writing a General User Proposal
 - Start thinking about a suitable project right away
 - Make proposal and get approval before starting
Course syllabus

• Focus on applications of synchrotron radiation
• Homework assignments
• In-class student presentations on research topics
 • Choose a research article which features a synchrotron technique
 • Timetable will be posted
• Final project - writing a General User Proposal
 • Start thinking about a suitable project right away
 • Make proposal and get approval before starting
• Visits to Advanced Photon Source (outside class, not required)
 • All students who plan to attend will need to request badges from APS
 • Use MRCAT (Sector 10) as location of experiment
 • Use Carlo Segre as local contact
 • State that your beamtime will be in the second week of March
33% – Homework assignments
33% – Homework assignments
 Weekly or bi-weekly
Course grading

33% – Homework assignments
 Weekly or bi-weekly
 Due at beginning of class
Course grading

33% – Homework assignments
 Weekly or bi-weekly
 Due at beginning of class
 May be turned in via Blackboard
Course grading

33% – Homework assignments
 Weekly or bi-weekly
 Due at beginning of class
 May be turned in via Blackboard

33% – General User Proposal
Course grading

33% – Homework assignments
 Weekly or bi-weekly
 Due at beginning of class
 May be turned in via Blackboard

33% – General User Proposal

33% – Final Exam Presentation
Course grading

33% – Homework assignments
 Weekly or bi-weekly
 Due at beginning of class
 May be turned in via Blackboard

33% – General User Proposal

33% – Final Exam Presentation

Grading scale

A – 80% to 100%
B – 65% to 80%
C – 50% to 65%
E – 0% to 50%
Topics to be covered (at a minimum)

• X-rays and their interaction with matter
• Sources of x-rays
• Refraction and reflection from interfaces
• Kinematical diffraction
• Diffraction by perfect crystals
• Small angle scattering
• Photoelectric absorption
• Resonant scattering
• Imaging
Topics to be covered (at a minimum)

• X-rays and their interaction with matter
Topics to be covered (at a minimum)

• X-rays and their interaction with matter
• Sources of x-rays
Topics to be covered (at a minimum)

• X-rays and their interaction with matter
• Sources of x-rays
• Refraction and reflection from interfaces
Topics to be covered (at a minimum)

- X-rays and their interaction with matter
- Sources of x-rays
- Refraction and reflection from interfaces
- Kinematical diffraction
Topics to be covered (at a minimum)

- X-rays and their interaction with matter
- Sources of x-rays
- Refraction and reflection from interfaces
- Kinematical diffraction
- Diffraction by perfect crystals
Topics to be covered (at a minimum)

- X-rays and their interaction with matter
- Sources of x-rays
- Refraction and reflection from interfaces
- Kinematical diffraction
- Diffraction by perfect crystals
- Small angle scattering
Topics to be covered (at a minimum)

- X-rays and their interaction with matter
- Sources of x-rays
- Refraction and reflection from interfaces
- Kinematical diffraction
- Diffraction by perfect crystals
- Small angle scattering
- Photoelectric absorption
Topics to be covered (at a minimum)

- X-rays and their interaction with matter
- Sources of x-rays
- Refraction and reflection from interfaces
- Kinematical diffraction
- Diffraction by perfect crystals
- Small angle scattering
- Photoelectric absorption
- Resonant scattering
Topics to be covered (at a minimum)

- X-rays and their interaction with matter
- Sources of x-rays
- Refraction and reflection from interfaces
- Kinematical diffraction
- Diffraction by perfect crystals
- Small angle scattering
- Photoelectric absorption
- Resonant scattering
- Imaging
Resources for the course

Resources for the course

- Center for X-Ray Optics web site: http://cxro.lbl.gov
Resources for the course

- Center for X-Ray Optics web site: http://cxro.lbl.gov
- Hephaestus from the Demeter suite: http://bruceravel.github.io/demeter/
Resources for the course

- Center for X-Ray Optics web site: http://cxro.lbl.gov
- Hephaestus from the Demeter suite: http://bruceravel.github.io/demeter/
- McMaster data on the Web: http://csrrri.iit.edu/periodic-table.html
Resources for the course

- Center for X-Ray Optics web site: http://cxro.lbl.gov
- Hephaestus from the Demeter suite: http://bruceravel.github.io/demeter/
- McMaster data on the Web: http://csrri.iit.edu/periodic-table.html
Today's outline - January 09, 2018

- The big picture
- History of x-ray sources
- X-ray interactions with matter
- Thomson scattering
- Atomic form factor

Reading Assignment: Chapter 1.1–1.6; 2.1–2.2
Today’s outline - January 09, 2018

• The big picture
Today’s outline - January 09, 2018

• The big picture

• History of x-ray sources
Today’s outline - January 09, 2018

- The big picture
- History of x-ray sources
- X-ray interactions with matter
• The big picture
• History of x-ray sources
• X-ray interactions with matter
• Thomson scattering
Today’s outline - January 09, 2018

• The big picture
• History of x-ray sources
• X-ray interactions with matter
• Thomson scattering
• Atomic form factor

Reading Assignment: Chapter 1.1–1.6; 2.1–2.2
Today’s outline - January 09, 2018

- The big picture
- History of x-ray sources
- X-ray interactions with matter
- Thomson scattering
- Atomic form factor

Reading Assignment: Chapter 1.1–1.6; 2.1–2.2
Why synchrotron radiation?

X-rays are the ideal structural probe for interatomic distances with wavelengths of $\sim 1 \, \text{Å}$
Why synchrotron radiation?

X-rays are the ideal structural probe for interatomic distances with wavelengths of ~ 1 Å

Laboratory x-ray sources are extremely useful and have gotten much better in the past decades but some experiments can only be done at a synchrotron.
Why synchrotron radiation?

X-rays are the ideal structural probe for interatomic distances with wavelengths of ~ 1 Å

Laboratory x-ray sources are extremely useful and have gotten much better in the past decades but some experiments can only be done at a synchrotron

Synchrotron sources provide superior flux, brilliance, and tunability
Why synchrotron radiation?

X-rays are the ideal structural probe for interatomic distances with wavelengths of ~ 1 Å

Laboratory x-ray sources are extremely useful and have gotten much better in the past decades but some experiments can only be done at a synchrotron

Synchrotron sources provide superior flux, brilliance, and tunability

Synchrotron sources and particularly FELs produce coherent beams
X-rays are the ideal structural probe for interatomic distances with wavelengths of ~ 1 Å

Laboratory x-ray sources are extremely useful and have gotten much better in the past decades but some experiments can only be done at a synchrotron

Synchrotron sources provide superior flux, brilliance, and tunability

Synchrotron sources and particularly FELs produce coherent beams

The broad range of techniques make synchrotron x-ray sources to nearly any science or engineering field
A bit about my research...
History of x-ray sources

- 1895 x-rays discovered by William Röntgen

• 1st generation synchrotrons initially used in parasitic mode (SSRL, CHESS)
• 2nd generation were dedicated sources (NSLS, SRC, CAMD)
• 3rd generation featured insertion devices (APS, ESRF, ALS)
• 4th generation are free electron lasers (LCLS, XFEL)
History of x-ray sources

- 1895 x-rays discovered by William Röntgen
- 1st generation synchrotrons initially used in parasitic mode (SSRL, CHESS)
History of x-ray sources

- 1895 x-rays discovered by William Röntgen
- 1st generation synchrotrons initially used in parasitic mode (SSRL, CHESS)
- 2nd generation were dedicated sources (NSLS, SRC, CAMD)
1895 x-rays discovered by William Röntgen

1st generation synchrotrons initially used in parasitic mode (SSRL, CHESS)

2nd generation were dedicated sources (NSLS, SRC, CAMD)

3rd generation featured insertion devices (APS, ESRF, ALS)
1895 x-rays discovered by William Röntgen

1st generation synchrotrons initially used in parasitic mode (SSRL, CHESS)

2nd generation were dedicated sources (NSLS, SRC, CAMD)

3rd generation featured insertion devices (APS, ESRF, ALS)

4th generation are free electron lasers (LCLS, XFEL)
The classical x-ray

The classical plane wave representation of x-rays is:
The classical x-ray

The classical plane wave representation of x-rays is:

\[E(r, t) = \hat{e}E_0 e^{i(k \cdot r - \omega t)} \]

where \(\hat{e} \) is a unit vector in the direction of the electric field, \(k \) is the wavevector of the radiation along the propagation direction, and \(\omega \) is the angular frequency of oscillation of the radiation.
The classical x-ray

The classical plane wave representation of x-rays is:

\[E(\mathbf{r}, t) = \hat{\epsilon} E_0 e^{i(\mathbf{k} \cdot \mathbf{r} - \omega t)} \]

where \(\hat{\epsilon} \) is a unit vector in the direction of the electric field.
The classical x-ray

The classical plane wave representation of x-rays is:

$$E(r, t) = \hat{\epsilon} E_0 e^{i(k \cdot r - \omega t)}$$

where $\hat{\epsilon}$ is a unit vector in the direction of the electric field, k is the wavevector of the radiation along the propagation direction.
The classical x-ray

The classical plane wave representation of x-rays is:

\[E(r, t) = \hat{e}E_0 e^{i(k \cdot r - \omega t)} \]

where \(\hat{e} \) is a unit vector in the direction of the electric field, \(k \) is the wavevector of the radiation along the propagation direction, and \(\omega \) is the angular frequency of oscillation of the radiation.
The classical x-ray

The classical plane wave representation of x-rays is:

\[\mathbf{E}(\mathbf{r}, t) = \hat{\mathbf{e}} E_0 e^{i(k \cdot \mathbf{r} - \omega t)} \]

where \(\hat{\mathbf{e}} \) is a unit vector in the direction of the electric field, \(\mathbf{k} \) is the wavevector of the radiation along the propagation direction, and \(\omega \) is the angular frequency of oscillation of the radiation.

If the energy, \(\mathcal{E} \) is in keV, the relationship among these quantities is given by:

\[\hbar \omega = \hbar \nu = \mathcal{E}, \lambda \nu = c \lambda = \frac{hc}{\mathcal{E}} = \left(4.1357 \times 10^{-15} \text{eV} \cdot \text{s}\right) \left(2.9979 \times 10^8 \text{m/s}\right)/\mathcal{E} = \left(4.1357 \times 10^{-18} \text{keV} \cdot \text{s}\right) \left(2.9979 \times 10^{18} \text{˚A/s}\right)/\mathcal{E} = 12.398 \text{˚A/keV} \]
The classical x-ray

The classical plane wave representation of x-rays is:

\[E(r, t) = \hat{\epsilon}E_0e^{i(k \cdot r - \omega t)} \]

where \(\hat{\epsilon} \) is a unit vector in the direction of the electric field, \(k \) is the wavevector of the radiation along the propagation direction, and \(\omega \) is the angular frequency of oscillation of the radiation.

If the energy, \(\mathcal{E} \) is in keV, the relationship among these quantities is given by:

\[\hbar\omega = h\nu = \mathcal{E}, \lambda\nu = c \]
The classical x-ray

The classical plane wave representation of x-rays is:

\[E(r, t) = \hat{e} E_0 e^{i(k \cdot r - \omega t)} \]

where \(\hat{e} \) is a unit vector in the direction of the electric field, \(k \) is the wavevector of the radiation along the propagation direction, and \(\omega \) is the angular frequency of oscillation of the radiation.

If the energy, \(\mathcal{E} \) is in keV, the relationship among these quantities is given by:

\[\hbar \omega = h \nu = \mathcal{E}, \lambda \nu = c \]

\[\lambda = \frac{hc}{\mathcal{E}} \]
\[= (4.1357 \times 10^{-15} \text{ eV} \cdot \text{s})(2.9979 \times 10^8 \text{ m/s})/\mathcal{E} \]
\[= (4.1357 \times 10^{-18} \text{ keV} \cdot \text{s})(2.9979 \times 10^{18} \text{ Å/s})/\mathcal{E} \]
\[= 12.398 \text{ Å} \cdot \text{keV}/\mathcal{E} \quad \text{to give units of Å} \]
Interactions of x-rays with matter

For the purposes of this course, we care most about the interactions of x-rays with matter.

There are four basic types of such interactions:

1. Elastic scattering
2. Inelastic scattering
3. Absorption
4. Pair production

We will only discuss the first three.
Interactions of x-rays with matter

For the purposes of this course, we care most about the interactions of x-rays with matter.

There are four basic types of such interactions:

1. Elastic scattering
Interactions of x-rays with matter

For the purposes of this course, we care most about the interactions of x-rays with matter.

There are four basic types of such interactions:

1. Elastic scattering
2. Inelastic scattering
Interactions of x-rays with matter

For the purposes of this course, we care most about the interactions of x-rays with matter.

There are four basic types of such interactions:

1. Elastic scattering
2. Inelastic scattering
3. Absorption
Interactions of x-rays with matter

For the purposes of this course, we care most about the interactions of x-rays with matter.

There are four basic types of such interactions:

1. Elastic scattering
2. Inelastic scattering
3. Absorption
4. Pair production
Interactions of x-rays with matter

For the purposes of this course, we care most about the interactions of x-rays with matter.

There are four basic types of such interactions:

1. Elastic scattering
2. Inelastic scattering
3. Absorption
4. Pair production

We will only discuss the first three.
Elastic scattering

Most of the phenomena we will discuss can be treated classically as elastic scattering of electromagnetic waves (x-rays)
Elastic scattering

Most of the phenomena we will discuss can be treated classically as elastic scattering of electromagnetic waves (x-rays)

The typical scattering geometry is

\[k \rightarrow k' \rightarrow Q \]

where an incident x-ray of wave number \(k \) scatters elastically from an electron to \(k' \) resulting in a scattering vector \(Q \) or in terms of momentum transfer:

\[\hbar Q = \hbar k - \hbar k' \]
Elastic scattering

Most of the phenomena we will discuss can be treated classically as elastic scattering of electromagnetic waves (x-rays)

The typical scattering geometry is

\[k' = k - Q \]

where an incident x-ray of wave number \(k \)
Elastic scattering

Most of the phenomena we will discuss can be treated classically as elastic scattering of electromagnetic waves (x-rays)

The typical scattering geometry is

\[\mathbf{k}', \mathbf{Q}, \mathbf{k} \]

where an incident x-ray of wave number \(\mathbf{k} \) scatters elastically from an electron to \(\mathbf{k}' \)
Elastic scattering

Most of the phenomena we will discuss can be treated classically as elastic scattering of electromagnetic waves (x-rays)

The typical scattering geometry is

\[\mathbf{k}' \]
\[Q \]
\[\mathbf{k} \]

where an incident x-ray of wave number \(\mathbf{k} \) scatters elastically from an electron to \(\mathbf{k}' \) resulting in a scattering vector \(Q \)
Elastic scattering

Most of the phenomena we will discuss can be treated classically as elastic scattering of electromagnetic waves (x-rays).

The typical scattering geometry is

\[\mathbf{k}' \]

where an incident x-ray of wave number \(\mathbf{k} \) scatters elastically from an electron to \(\mathbf{k}' \)
resulting in a scattering vector \(\mathbf{Q} \)

or in terms of momentum transfer:

\[\hbar \mathbf{Q} = \hbar \mathbf{k} - \hbar \mathbf{k}' \]
Elastic scattering

Most of the phenomena we will discuss can be treated classically as elastic scattering of electromagnetic waves (x-rays).

The typical scattering geometry is

\[\mathbf{k}' \rightarrow \mathbf{Q} \rightarrow \mathbf{k} \]

where an incident x-ray of wave number \(\mathbf{k} \) scatters elastically from an electron to \(\mathbf{k}' \) resulting in a scattering vector \(\mathbf{Q} \).

or in terms of momentum transfer: \(\hbar \mathbf{Q} = \hbar \mathbf{k} - \hbar \mathbf{k}' \)

Start with the scattering from a single electron, then build up to more complexity.
Thomson scattering

Assumptions:

incident x-ray plane wave

electron is a point charge

scattering is elastic

\[\text{scattered intensity} \propto \frac{1}{R^2} \]

The electron is exposed to the incident electric field \(E_{\text{in}}(t') \) and is accelerated.

The acceleration of the electron, \(a_x(t') \), results in the radiation of a spherical wave with the same frequency.

The observer at \(R \) "sees" a scattered electric field \(E_{\text{rad}}(R, t) \) at a later time \(t = t' + R/c \).

Using this, calculate the elastic scattering cross-section.
Thomson scattering

Assumptions:

- incident x-ray plane wave
Thomson scattering

Assumptions:

- incident x-ray plane wave
- electron is a point charge

\[\text{scattered intensity } \propto \frac{1}{R^2} \]

The electron is exposed to the incident electric field \(E_{\text{in}} \) and is accelerated. The acceleration of the electron, \(a_x(t') \), results in the radiation of a spherical wave with the same frequency. The observer at \(R \) "sees" a scattered electric field \(E_{\text{rad}}(R, t) \) at a later time \(t = t' + \frac{R}{c} \).

Using this, calculate the elastic scattering cross-section.
Thomson scattering

Assumptions:

- incident x-ray plane wave
- electron is a point charge
- scattering is elastic

\[\text{scattered intensity} \propto \frac{1}{R^2} \]

The electron is exposed to the incident electric field \(E_{\text{in}} \) and is accelerated. The acceleration of the electron, \(a_x(t') \), results in the radiation of a spherical wave with the same frequency. The observer at \(R \) "sees" a scattered electric field \(E_{\text{rad}}(R, t') \) at a later time \(t = t' + R/c \).

Using this, calculate the elastic scattering cross-section.
Thomson scattering

Assumptions:

- incident x-ray plane wave
- electron is a point charge
- scattering is elastic
- scattered intensity $\propto 1/R^2$

The electron is exposed to the incident electric field $E_{\text{in}}(t')$ and is accelerated. The acceleration of the electron, $a_x(t')$, results in the radiation of a spherical wave with the same frequency. The observer at R "sees" a scattered electric field $E_{\text{rad}}(R, t)$ at a later time $t = t' + R/c$. Using this, calculate the elastic scattering cross-section.
Thomson scattering

Assumptions:
- incident x-ray plane wave
- electron is a point charge
- scattering is elastic
- scattered intensity $\propto 1/R^2$

The electron is exposed to the incident electric field $E_{in}(t')$ and is accelerated.

The observer at R "sees" a scattered electric field $E_{rad}(R, t')$ at a later time $t = t' + R/c$.
Thomson scattering

Assumptions:
- incident x-ray plane wave
- electron is a point charge
- scattering is elastic
- scattered intensity $\propto 1/R^2$

The electron is exposed to the incident electric field $E_{in}(t')$ and is accelerated

The acceleration of the electron, $a_x(t')$, results in the radiation of a spherical wave with the same frequency
Thomson scattering

Assumptions:
- incident x-ray plane wave
- electron is a point charge
- scattering is elastic
- scattered intensity $\propto 1/R^2$

The electron is exposed to the incident electric field $E_{in}(t')$ and is accelerated.

The acceleration of the electron, $a_x(t')$, results in the radiation of a spherical wave with the same frequency.

The observer at R “sees” a scattered electric field $E_{rad}(R, t)$ at a later time $t = t' + R/c$.

![Diagram of Thomson scattering](image)
Thomson scattering

Assumptions:
- incident x-ray plane wave
- electron is a point charge
- scattering is elastic
- scattered intensity $\propto \frac{1}{R^2}$

The electron is exposed to the incident electric field $E_{\text{in}}(t')$ and is accelerated

The acceleration of the electron, $a_x(t')$, results in the radiation of a spherical wave with the same frequency

The observer at R “sees” a scattered electric field $E_{\text{rad}}(R, t)$ at a later time $t = t' + R/c$

Using this, calculate the elastic scattering cross-section
Thomson scattering

\[E_{\text{rad}}(R, t) = -\frac{e}{4\pi \epsilon_0 c^2 R} a_x(t') \sin \Psi \]
Thomson scattering

\[E_{rad}(R, t) = -\frac{-e}{4\pi\epsilon_0 c^2 R} a_x(t') \sin \Psi \]

where \(t' = t - \frac{R}{c} \)
Thomson scattering

\[E_{\text{rad}}(R, t) = -\frac{-e}{4\pi \epsilon_0 c^2 R} a_x(t') \sin \Psi \quad \text{where} \quad t' = t - \frac{R}{c} \]

\[a_x(t') = -\frac{e}{m} E_{x0} e^{-i\omega t'} \]
Thomson scattering

\[E_{\text{rad}}(R, t) = -\frac{-e}{4\pi\epsilon_0 c^2 R} a_x(t') \sin \Psi \]

where \(t' = t - \frac{R}{c} \)

\[a_x(t') = -\frac{e}{m} E_{x0} e^{-i\omega t'} = -\frac{e}{m} E_{x0} e^{-i\omega t} e^{i\omega R/c} \]
Thomson scattering

\[E_{rad}(R, t) = \frac{-e}{4\pi \epsilon_0 c^2 R} a_x(t') \sin \Psi \quad \text{where} \quad t' = t - R/c \]

\[a_x(t') = -\frac{e}{m} E_{x0} e^{-i\omega t'} = -\frac{e}{m} E_{x0} e^{-i\omega t} e^{i\omega R/c} \]

\[a_x(t') = -\frac{e}{m} E_{in} e^{i\omega R/c} \]
Thomson scattering

\[E_{\text{rad}}(R, t) = -\frac{e}{4\pi\epsilon_0 c^2 R} -\frac{e}{m} E_{\text{in}} e^{i\omega R/c} \sin \Psi \]
Thomson scattering

\[E_{\text{rad}}(R, t) = -\frac{e}{4\pi \epsilon_0 c^2 R} \frac{e}{m} E_{\text{in}} e^{i\omega R/c} \sin \Psi \]

\[\frac{E_{\text{rad}}(R, t)}{E_{\text{in}}} = -\frac{e^2}{4\pi \epsilon_0 m c^2} \frac{e^{i\omega R/c}}{R} \sin \Psi \]
Thomson scattering

\[
E_{\text{rad}}(R, t) = -\frac{e}{4\pi\varepsilon_0 c^2 R} \frac{e}{m} E_{\text{in}} e^{i\omega R/c} \sin \Psi
\]

\[
\frac{E_{\text{rad}}(R, t)}{E_{\text{in}}} = -\frac{e^2}{4\pi\varepsilon_0 mc^2} \frac{e^{i\omega R/c}}{R} \sin \Psi \quad \text{but} \quad k = \frac{\omega}{c}
\]
Thomson scattering

\[\frac{E_{\text{rad}}(R, t)}{E_{\text{in}}} = - \frac{e^2}{4\pi \epsilon_0 mc^2} \frac{e^{ikR}}{R} \sin \Psi = -r_0 \frac{e^{ikR}}{R} \sin \Psi \]
Thomson scattering

\[E_{\text{rad}}(R, t) \]

\[= - \frac{e^2}{4\pi \epsilon_0 mc^2} \frac{e^{ikR}}{R} \sin \Psi \]

\[= -r_0 \frac{e^{ikR}}{R} \sin \Psi \]

\[r_0 = \frac{e^2}{4\pi \epsilon_0 mc^2} = 2.82 \times 10^{-5} \text{Å} \]
Scattering cross-section

The cross-section of incoming beam is A_0. The cross-section of scattered beam (into detector) is $R^2 \Delta \Omega \Phi_0 \equiv I_0 A_0 = c |E_{in}|^2 \hbar \omega$.

The intensity of scattered beam is $I_{sc} \propto c (R^2 \Delta \Omega) |E_{rad}|^2 |E_{in}|^2 R^2 \Delta \Omega$.

C. Segre (IIT)

PHYS 570 - Spring 2018

January 09, 2018 18 / 20
Scattering cross-section

Detector of solid angle $\Delta \Omega$ at a distance R from electron
Scattering cross-section

Detector of solid angle $\Delta \Omega$ at a distance R from electron
Cross-section of incoming beam is A_0
Detector of solid angle $\Delta \Omega$ at a distance R from electron
Cross-section of incoming beam is A_0

$$\Phi_0 \equiv \frac{I_0}{A_0} = c \frac{|E_{in}|^2}{\hbar \omega}$$
Scattering cross-section

Detector of solid angle $\Delta\Omega$ at a distance R from electron
Cross-section of incoming beam is A_0

$$\Phi_0 \equiv \frac{l_0}{A_0} = c \frac{|E_{in}|^2}{\hbar \omega}$$

$$I_{sc} \propto c (R^2 \Delta \Omega) \frac{|E_{rad}|^2}{\hbar \omega}$$
Scattering cross-section

Detector of solid angle $\Delta \Omega$ at a distance R from electron
Cross-section of incoming beam is A_0
Cross section of scattered beam (into detector) is $R^2 \Delta \Omega$

$$\Phi_0 \equiv \frac{l_0}{A_0} = c \frac{|E_{in}|^2}{\hbar \omega}$$

$$I_{sc} \propto c(R^2 \Delta \Omega) \frac{|E_{rad}|^2}{\hbar \omega}$$
Scattering cross-section

Detector of solid angle $\Delta \Omega$ at a distance R from electron
Cross-section of incoming beam is A_0
Cross section of scattered beam (into detector) is $R^2 \Delta \Omega$

$$\Phi_0 \equiv \frac{l_0}{A_0} = c \frac{|E_{in}|^2}{\hbar \omega}$$

$$I_{sc} \propto c (R^2 \Delta \Omega) \frac{|E_{rad}|^2}{\hbar \omega}$$

$$\frac{I_{sc}}{I_0} = \frac{|E_{rad}|^2}{|E_{in}|^2} R^2 \Delta \Omega$$
Scattering cross-section

Differential cross-section is obtained by normalizing

$$d\sigma d\Omega = I_{sc} \Phi_0 \Delta\Omega = I_{sc} \left(\frac{I_0}{A_0} \right) \Delta\Omega = |E_{rad}|^2 |E_{in}|^2 \frac{R^2}{r_0^2} \sin^2 \Psi = -r_0 e^{ikR} R \left| \hat{\epsilon} \cdot \hat{\epsilon}' \right| = -r_0 e^{ikR} R \left| \cos \left(\frac{\pi}{2} - \Psi \right) \right| = -r_0 e^{ikR} R \sin \Psi$$
Scattering cross-section

Differential cross-section is obtained by normalizing

\[
\frac{d\sigma}{d\Omega} = I_{sc} \Phi_0 \Delta \Omega = I_{sc} \left(\frac{I_0}{A_0} \right) \Delta \Omega = |E_{rad}|^2 |E_{in}|^2 R^2 = r_0^2 \sin^2 \Psi
\]

\[
E_{rad} E_{in} = -r_0 e^{i k R} R |\hat{\epsilon} \cdot \hat{\epsilon}'| = -r_0 e^{i k R} R \cos(\pi/2 - \Psi) |\sin \Psi|
\]
Differential cross-section is obtained by normalizing

\[
\frac{d\sigma}{d\Omega} = \frac{I_{sc}}{\Phi_0 \Delta \Omega}
\]
Scattering cross-section

Differential cross-section is obtained by normalizing

\[\frac{d\sigma}{d\Omega} = \frac{l_{sc}}{\Phi_0 \Delta\Omega} = \frac{l_{sc}}{(l_0/A_0) \Delta\Omega} \]
Scattering cross-section

Differential cross-section is obtained by normalizing

\[
\frac{d\sigma}{d\Omega} = \frac{l_{sc}}{\Phi_0 \Delta \Omega} = \frac{l_{sc}}{(I_0/A_0) \Delta \Omega} = \frac{|E_{rad}|^2}{|E_{in}|^2} R^2
\]
Scattering cross-section

Differential cross-section is obtained by normalizing

\[
\frac{d\sigma}{d\Omega} = \frac{I_{sc}}{\Phi_0 \Delta\Omega} = \frac{I_{sc}}{(I_0/A_0) \Delta\Omega} = \frac{|E_{rad}|^2}{|E_{in}|^2} R^2
\]

\[
\frac{E_{rad}}{E_{in}} = -r_0 \frac{e^{ikR}}{R} \left| \hat{\epsilon} \cdot \hat{\epsilon}' \right|
\]
Scattering cross-section

Differential cross-section is obtained by normalizing

\[
\frac{d\sigma}{d\Omega} = \frac{l_{sc}}{\Phi_0 \Delta\Omega} = \frac{l_{sc}}{(l_0/A_0) \Delta\Omega} = \frac{|E_{rad}|^2}{|E_{in}|^2} R^2
\]

\[
\frac{E_{rad}}{E_{in}} = -r_0 \frac{e^{ikR}}{R} |\hat{\epsilon} \cdot \hat{\epsilon}'| = -r_0 \frac{e^{ikR}}{R} |\cos (\frac{\pi}{2} - \Psi)|
\]
Scattering cross-section

Differential cross-section is obtained by normalizing

\[
\frac{d\sigma}{d\Omega} = \frac{I_{sc}}{\Phi_0 \Delta\Omega} = \frac{I_{sc}}{(I_0/A_0) \Delta\Omega} = \frac{|E_{rad}|^2}{|E_{in}|^2} R^2
\]

\[
\frac{E_{rad}}{E_{in}} = -r_0 \frac{e^{ikR}}{R} |\hat{e} \cdot \hat{e}'| = -r_0 \frac{e^{ikR}}{R} \left| \cos \left(\frac{\pi}{2} - \psi \right) \right| = -r_0 \frac{e^{ikR}}{R} \sin \psi
\]
Scattering cross-section

Differential cross-section is obtained by normalizing

\[\frac{d\sigma}{d\Omega} = \frac{I_{sc}}{\Phi_0 \Delta\Omega} = \frac{I_{sc}}{(I_0/A_0) \Delta\Omega} = \frac{|E_{rad}|^2}{|E_{in}|^2} R^2 = r_0^2 \sin^2 \Psi \]

\[\frac{E_{rad}}{E_{in}} = -r_0 e^{ikR} \frac{\hat{\epsilon} \cdot \hat{\epsilon}'}{R} = -r_0 \frac{e^{ikR}}{R} \left| \cos \left(\frac{\pi}{2} - \Psi \right) \right| = -r_0 \frac{e^{ikR}}{R} \sin \Psi \]
Total cross-section

Integrate to obtain the total Thomson scattering cross-section from an electron.

σ = \frac{8}{3} \pi r_0^2 = 0.665 \times 10^{-24} \text{ cm}^2 = 0.665 \text{ barn}

Polarization factor = \begin{cases}
1 & \sin^2 \Psi \\
\frac{1}{2} (1 + \sin^2 \Psi) & \end{cases}
Integrate to obtain the total Thomson scattering cross-section from an electron.

\[
\sigma = \frac{8\pi}{3} r_0^2
\]
Integrate to obtain the total Thomson scattering cross-section from an electron.

\[\sigma = \frac{8\pi}{3} r_0^2 \]
\[= 0.665 \times 10^{-24} \text{ cm}^2 \]
\[= 0.665 \text{ barn} \]
Integrate to obtain the total Thomson scattering cross-section from an electron. If displacement is in vertical direction, $\sin \Psi$ term is replaced by unity and if the source is unpolarized, it is a combination.

\[
\sigma = \frac{8\pi}{3} r_0^2
\]

\[
= 0.665 \times 10^{-24} \text{ cm}^2
\]

\[
= 0.665 \text{ barn}
\]

Polarization factor:

\[
\frac{1}{2} \left(1 + \sin^2 \Psi \right)
\]