Reflection and Transmission Coefficients

For a slab of thickness Δ on a substrate, the transmission and reflection coefficients at each interface are labeled:
Reflection and Transmission Coefficients

For a slab of thickness Δ on a substrate, the transmission and reflection coefficients at each interface are labeled:

- r_{01} – reflection in n_0 off n_1
- t_{01} – transmission from n_0 into n_1
Reflection and Transmission Coefficients

For a slab of thickness Δ on a substrate, the transmission and reflection coefficients at each interface are labeled:

- r_{01} – reflection in n_0 off n_1
- t_{01} – transmission from n_0 into n_1
- r_{12} – reflection in n_1 off n_2
- t_{12} – transmission from n_1 into n_2
Reflection and Transmission Coefficients

For a slab of thickness Δ on a substrate, the transmission and reflection coefficients at each interface are labeled:

- r_{01} – reflection in n_0 off n_1
- t_{01} – transmission from n_0 into n_1
- r_{12} – reflection in n_1 off n_2
- t_{12} – transmission from n_1 into n_2
- r_{10} – reflection in n_1 off n_0
- t_{10} – transmission from n_1 into n_0
Reflection and Transmission Coefficients

For a slab of thickness Δ on a substrate, the transmission and reflection coefficients at each interface are labeled:

\[n_0 \bullet r_{10} \bullet t_{01} \bullet n_1 \]

- r_{01} – reflection in n_0 off n_1
- t_{01} – transmission from n_0 into n_1

\[n_1 \bullet r_{12} \bullet t_{12} \bullet n_2 \]

- r_{12} – reflection in n_1 off n_2
- t_{12} – transmission from n_1 into n_2

\[n_1 \bullet r_{10} \bullet t_{10} \bullet n_0 \]

- r_{10} – reflection in n_1 off n_0
- t_{10} – transmission from n_1 into n_0

Build the composite reflection coefficient from all possible events
Overall Reflection from a Slab

The composite reflection coefficient for each ray emerging from the top surface is computed
Overall Reflection from a Slab

The composite reflection coefficient for each ray emerging from the top surface is computed:

\[n_0 \rightarrow r_{01} \rightarrow n_1 \rightarrow r_{12} \rightarrow n_2 \]

Inside the medium, the x-rays are travelling an additional \(2\Delta \) per traversal, which creates a phase shift of:

\[\Phi_2 = e^{i2(\kappa_1 \sin \alpha_1)\Delta} = e^{iQ_1 \Delta} \]

which multiplies the reflection coefficient at each pass through the slab.
Overall Reflection from a Slab

The composite reflection coefficient for each ray emerging from the top surface is computed:

\[r_{01} + t_{01} r_{12} t_{10} \]

Inside the medium, the x-rays are travelling an additional 2\(\Delta \) per traversal, which creates a phase shift of:

\[p_2 = e^{i2(k_1 \sin \alpha_1 \Delta)} = e^{iQ_1 \Delta} \]

which multiplies the reflection coefficient at each pass through the slab.
Overall Reflection from a Slab

The composite reflection coefficient for each ray emerging from the top surface is computed

\[r_{01} \]

\[+ \]

\[t_{01} r_{12} t_{10} \]

\[+ \]

\[t_{01} r_{12} r_{10} r_{12} t_{10} \]
Overall Reflection from a Slab

The composite reflection coefficient for each ray emerging from the top surface is computed

\[
\begin{align*}
 r_{01} & \quad + \\
 t_{01}r_{12}t_{10} & \quad + \\
 t_{01}r_{12}r_{10}r_{12}t_{10}
\end{align*}
\]

Inside the medium, the x-rays are travelling an additional \(2\Delta\) per traversal, which creates a phase shift of

\[p^2 = e^{i2(k_1 \sin \alpha_1)\Delta}\]
Overall Reflection from a Slab

The composite reflection coefficient for each ray emerging from the top surface is computed

\[r_{01} \]

\[+ \]

\[t_{01} r_{12} t_{10} \]

\[+ \]

\[t_{01} r_{12} r_{10} r_{12} t_{10} \]

Inside the medium, the x-rays are travelling an additional \(2\Delta\) per traversal, which creates a phase shift of

\[p^2 = e^{i2(k_1 \sin \alpha_1)\Delta} = e^{iQ_1\Delta} \]

\[\Delta \]
Overall Reflection from a Slab

The composite reflection coefficient for each ray emerging from the top surface is computed

\[n_0 \]
\[n_1 \]
\[n_2 \]

Inside the medium, the x-rays are travelling an additional \(2\Delta\) per traversal, which creates a phase shift of

\[p^2 = e^{i2(k_1 \sin \alpha_1)\Delta} = e^{iQ_1\Delta} \]

which multiplies the reflection coefficient
Overall Reflection from a Slab

The composite reflection coefficient for each ray emerging from the top surface is computed

\[r_{01} + t_{01}r_{12}t_{10} \cdot p^2 + t_{01}r_{12}r_{10}r_{12}t_{10} \cdot p^4 \]

Inside the medium, the x-rays are travelling an additional 2Δ per traversal, which creates a phase shift of

\[p^2 = e^{i2(k_1 \sin \alpha_1)\Delta} = e^{iQ_1\Delta} \]

which multiplies the reflection coefficient at each pass through the slab.
Composite Reflection Coefficient

The composite reflection coefficient can now be expressed as a sum:

\[
\begin{align*}
 r_{\text{slab}} &= r_{01} + t_{01} r_{12} t_{10} + t_{01} r_{10} r_{212} t_{10} + t_{01} r_{210} r_{312} t_{10} + \cdots \\
&= r_{01} + t_{01} t_{10} r_{12} p_2^\infty \sum_{m=0}^{\infty} (r_{10} r_{12} p_2)^m
\end{align*}
\]

Factoring out the second term from all the rest and summing the geometric series as previously.

The individual reflection and transmission coefficients can be determined using the Fresnel equation. Recall:

\[
\begin{align*}
 r &= \frac{Q - Q'}{Q + Q'}, \\
 t &= \frac{2Q}{Q + Q'}
\end{align*}
\]
The composite reflection coefficient can now be expressed as a sum

\[r_{slab} = r_{01} + t_{01} r_{12} t_{10} p^2 + t_{01} r_{10} r_{12}^2 t_{10} p^4 + t_{01} r_{10}^2 r_{12}^3 t_{10} p^6 + \cdots \]
Composite Reflection Coefficient

The composite reflection coefficient can now be expressed as a sum

\[r_{slab} = r_0 + t_0 r_{12} t_{10} p^2 + t_0 r_{10} r_{12}^2 t_{10} p^4 + t_0 r_{10}^2 r_{12}^3 t_{10} p^6 + \cdots \]

factoring out second term from all the rest

The individual reflection and transmission coefficients can be determined using the Fresnel equation. Recall

\[r = \frac{Q - Q'}{Q + Q'} \]
\[t = \frac{2 Q}{Q + Q'} \]
The composite reflection coefficient can now be expressed as a sum

\[r_{\text{slab}} = r_0 + t_0 r_{12} t_{10} p^2 + t_0 r_{10} r_{12}^2 t_{10} p^4 + t_0 r_{10}^2 r_{12}^3 t_{10} p^6 + \cdots \]

\[r_{\text{slab}} = r_0 + t_0 t_{10} r_{12} p^2 \sum_{m=0}^{\infty} \left(r_{10} r_{12} p^2 \right)^m \]

factoring out second term from all the rest
The composite reflection coefficient can now be expressed as a sum

\[r_{\text{slab}} = r_{01} + t_{01} r_{12} t_{10} p^2 + t_{01} r_{10}^2 t_{10} p^4 + t_{01} r_{10}^2 r_{12} t_{10} p^6 + \cdots \]

\[r_{\text{slab}} = r_{01} + t_{01} t_{10} r_{12} p^2 \sum_{m=0}^{\infty} (r_{10} r_{12} p^2)^m \]

factoring out second term from all the rest

summing the geometric series as previously
The composite reflection coefficient can now be expressed as a sum

\[r_{\text{slab}} = r_{01} + t_{01} r_{12} t_{10} p^2 + t_{01} r_{10} r_{12} t_{10} p^4 + t_{01} r_{10}^2 r_{12} t_{10} p^6 + \cdots \]

\[r_{\text{slab}} = r_{01} + t_{01} t_{10} r_{12} p^2 \sum_{m=0}^{\infty} (r_{10} r_{12} p^2)^m \]

\[= r_{01} + t_{01} t_{10} r_{12} p^2 \frac{1}{1 - r_{10} r_{12} p^2} \]

The individual reflection and transmission coefficients can be determined using the Fresnel equation. Recall

\[r = y - y' \]
\[t = 2 (y y' + y'y) \]
The composite reflection coefficient can now be expressed as a sum

\[r_{slab} = r_{01} + t_{01} r_{12} t_{10} p^2 + t_{01} r_{10} r_{12}^2 t_{10} p^4 + t_{01} r_{10}^2 r_{12}^3 t_{10} p^6 + \cdots \]

\[r_{slab} = r_{01} + t_{01} t_{10} r_{12} p^2 \sum_{m=0}^{\infty} \left(r_{10} r_{12} p^2 \right)^m \]

\[= r_{01} + t_{01} t_{10} r_{12} p^2 \frac{1}{1 - r_{10} r_{12} p^2} \]

factoring out second term from all the rest

summing the geometric series as previously

The individual reflection and transmission coefficients can be determined using the Fresnel equation. Recall
The composite reflection coefficient can now be expressed as a sum

\[r_{slab} = r_{01} + t_{01} r_{12} t_{10} p^2 + t_{01} r_{10} r_{12} t_{10} p^4 + t_{01} r_{10} r_{12} t_{10} p^6 + \cdots \]

factoring out second term from all the rest

\[r_{slab} = r_{01} + t_{01} t_{10} r_{12} p^2 \sum_{m=0}^{\infty} \left(r_{10} r_{12} p^2 \right)^m \]

summing the geometric series as previously

\[= r_{01} + t_{01} t_{10} r_{12} p^2 \frac{1}{1 - r_{10} r_{12} p^2} \]

The individual reflection and transmission coefficients can be determined using the Fresnel equation. Recall

\[r = \frac{Q - Q'}{Q + Q'} \]
The composite reflection coefficient can now be expressed as a sum

\[r_{slab} = r_0 + t_0 r_{12} t_{10} p^2 + t_0 r_{10} r_{12}^2 t_{10} p^4 + t_0 r_{10} r_{12}^3 t_{10} p^6 + \cdots \]

Factoring out second term from all the rest

\[r_{slab} = r_0 + t_0 t_{10} r_{12} p^2 \sum_{m=0}^{\infty} (r_{10} r_{12}^2 p^2)^m \]

Summing the geometric series as previously

\[= r_0 + t_0 t_{10} r_{12} p^2 \frac{1}{1 - r_{10} r_{12} p^2} \]

The individual reflection and transmission coefficients can be determined using the Fresnel equation. Recall

\[r = \frac{Q - Q'}{Q + Q'}, \quad t = \frac{2Q}{Q + Q'} \]
Fresnel Equation Identity

Applying the Fresnel equations to the top interface
Applying the Fresnel equations to the top interface

\[r_{01} = \frac{Q_0 - Q_1}{Q_0 + Q_1} \]
Fresnel Equation Identity

Applying the Fresnel equations to the top interface

\[r_{01} = \frac{Q_0 - Q_1}{Q_0 + Q_1} \]

\[t_{01} = \frac{2Q_0}{Q_0 + Q_1} \]
Applying the Fresnel equations to the top interface

\[r_{01} = \frac{Q_0 - Q_1}{Q_0 + Q_1} \]
\[t_{01} = \frac{2Q_0}{Q_0 + Q_1} \]

\[r_{10} = \frac{Q_1 - Q_0}{Q_1 + Q_0} = -r_{01} \]
Applying the Fresnel equations to the top interface

\[r_{01} = \frac{Q_0 - Q_1}{Q_0 + Q_1} \]

\[r_{10} = \frac{Q_1 - Q_0}{Q_1 + Q_0} = -r_{01} \]

\[t_{01} = \frac{2Q_0}{Q_0 + Q_1} \]

\[t_{10} = \frac{2Q_1}{Q_1 + Q_0} \]
Fresnel Equation Identity

Applying the Fresnel equations to the top interface

\[r_{01} = \frac{Q_0 - Q_1}{Q_0 + Q_1} \]
\[t_{01} = \frac{2Q_0}{Q_0 + Q_1} \]
\[r_{10} = \frac{Q_1 - Q_0}{Q_1 + Q_0} = -r_{01} \]
\[t_{10} = \frac{2Q_1}{Q_1 + Q_0} \]

we can, therefore, construct the following identity

\[r_{01}^2 + t_{01} t_{10} \]
Fresnel Equation Identity

Applying the Fresnel equations to the top interface

\[r_{01} = \frac{Q_0 - Q_1}{Q_0 + Q_1} \quad t_{01} = \frac{2Q_0}{Q_0 + Q_1} \]

\[r_{10} = \frac{Q_1 - Q_0}{Q_1 + Q_0} = -r_{01} \quad t_{10} = \frac{2Q_1}{Q_1 + Q_0} \]

we can, therefore, construct the following identity

\[r_{01}^2 + t_{01}t_{10} = \frac{(Q_0 - Q_1)^2}{(Q_0 + Q_1)^2} + \frac{2Q_0}{Q_0 + Q_1} \cdot \frac{2Q_1}{Q_1 + Q_0} \]
Fresnel Equation Identity

Applying the Fresnel equations to the top interface

\[
\begin{align*}
 r_{01} &= \frac{Q_0 - Q_1}{Q_0 + Q_1} \\
 t_{01} &= \frac{2Q_0}{Q_0 + Q_1} \\
 r_{10} &= \frac{Q_1 - Q_0}{Q_1 + Q_0} = -r_{01} \\
 t_{10} &= \frac{2Q_1}{Q_1 + Q_0}
\end{align*}
\]

we can, therefore, construct the following identity

\[
\begin{align*}
 r_{01}^2 + t_{01}t_{10} &= \left(\frac{Q_0 - Q_1}{Q_0 + Q_1}\right)^2 + \frac{2Q_0}{Q_0 + Q_1} \cdot \frac{2Q_1}{Q_1 + Q_0} \\
 &= \frac{Q_0^2 + 2Q_0Q_1 + Q_1^2}{(Q_0 + Q_1)^2}
\end{align*}
\]
Fresnel Equation Identity

Applying the Fresnel equations to the top interface

\[r_{01} = \frac{Q_0 - Q_1}{Q_0 + Q_1} \quad \quad t_{01} = \frac{2Q_0}{Q_0 + Q_1} \]

\[r_{10} = \frac{Q_1 - Q_0}{Q_1 + Q_0} = -r_{01} \quad \quad t_{10} = \frac{2Q_1}{Q_1 + Q_0} \]

we can, therefore, construct the following identity

\[r_{01}^2 + t_{01}t_{10} = \frac{(Q_0 - Q_1)^2}{(Q_0 + Q_1)^2} + \frac{2Q_0}{Q_0 + Q_1} \frac{2Q_1}{Q_1 + Q_0} \]

\[= \frac{Q_0^2 + 2Q_0Q_1 + Q_1^2}{(Q_0 + Q_1)^2} = \frac{(Q_0 + Q_1)^2}{(Q_0 + Q_1)^2} = 1 \]
Reflection Coefficient of a Slab

Starting with the reflection coefficient of the slab obtained earlier

\[
\begin{align*}
 r_{\text{slab}} &= r_{01} + t_{01} t_{10} r_{12} \\
 &= r_{01} + (1 - r_{201}) r_{12} p_2 \\
 &= r_{01} + r_{201} r_{12} p_2 + (1 - r_{201}) r_{12} p_2 - r_{10} r_{12} p_2.
\end{align*}
\]

Using the identity
\[t_{01} t_{10} = 1 - r_{201} \]
expanding over a common denominator

and if
\[n_0 = n_2 \]
then
\[
 r_{01} = -r_{12} + r_{01} r_{12} p_2.
\]
Reflection Coefficient of a Slab

Starting with the reflection coefficient of the slab obtained earlier

\[r_{slab} = r_{01} + t_{01} t_{10} r_{12} p^2 \frac{1}{1 - r_{10} r_{12} p^2} \]
Reflection Coefficient of a Slab

Starting with the reflection coefficient of the slab obtained earlier

\[r_{slab} = r_{01} + t_{01} t_{10} r_{12} p^2 \frac{1}{1 - r_{10} r_{12} p^2} \]

Using the identity

\[t_{01} t_{10} = 1 - r_{01}^2 \]
Starting with the reflection coefficient of the slab obtained earlier

\[r_{slab} = r_{01} + t_{01} t_{10} r_{12} p^2 \frac{1}{1 - r_{10} r_{12} p^2} \]

Using the identity

\[t_{01} t_{10} = 1 - r_{01}^2 \]
Starting with the reflection coefficient of the slab obtained earlier

\[r_{slab} = r_{01} + t_{01} t_{10} r_{12} p^2 \frac{1}{1 - r_{10} r_{12} p^2} \]

\[= r_{01} + \left(1 - r_{01}^2\right) r_{12} p^2 \frac{1}{1 - r_{10} r_{12} p^2} \]

Using the identity

\[t_{01} t_{10} = 1 - r_{01}^2 \]

expanding over a common denominator
Starting with the reflection coefficient of the slab obtained earlier

\[r_{slab} = r_{01} + t_{01} t_{10} r_{12} p^2 \frac{1}{1 - r_{10} r_{12} p^2} \]

\[= r_{01} + \left(1 - r_{01}^2\right) r_{12} p^2 \frac{1}{1 - r_{10} r_{12} p^2} \]

\[= \frac{r_{01} + r_{01}^2 r_{12} p^2 + \left(1 - r_{01}^2\right) r_{12} p^2}{1 - r_{10} r_{12} p^2} \]

Using the identity

\[t_{01} t_{10} = 1 - r_{01}^2 \]

expanding over a common denominator
Reflection Coefficient of a Slab

Starting with the reflection coefficient of the slab obtained earlier

\[r_{slab} = r_{01} + t_{01} t_{10} r_{12} p^2 \frac{1}{1 - r_{10} r_{12} p^2} \]

\[= r_{01} + \left(1 - r_{01}^2\right) r_{12} p^2 \frac{1}{1 - r_{10} r_{12} p^2} \]

\[= \frac{r_{01} + r_{01}^2 r_{12} p^2 + \left(1 - r_{01}^2\right) r_{12} p^2}{1 - r_{10} r_{12} p^2} \]

\[r_{slab} = \frac{r_{01} - r_{12} p^2}{1 + r_{01} r_{12} p^2} \]

Using the identity

\[t_{01} t_{10} = 1 - r_{01}^2 \]

expanding over a common denominator
Reflection Coefficient of a Slab

Starting with the reflection coefficient of the slab obtained earlier

\[r_{slab} = r_0 + t_0 t_{10} r_{12} p^2 \frac{1}{1 - r_{10} r_{12} p^2} \]

\[= r_0 + \left(1 - r_{01}^2\right) r_{12} p^2 \frac{1}{1 - r_{10} r_{12} p^2} \]

\[= \frac{r_0 + r_{01}^2 r_{12} p^2 + \left(1 - r_{01}^2\right) r_{12} p^2}{1 - r_{10} r_{12} p^2} \]

Using the identity

\[t_0 t_{10} = 1 - r_{01}^2 \]

expanding over a common denominator

and if \(n_0 = n_2 \) then

\[r_{01} = -r_{12} \]
Reflection Coefficient of a Slab

Starting with the reflection coefficient of the slab obtained earlier

\[r_{\text{slab}} = r_{01} + t_{01} t_{10} r_{12} p^2 \frac{1}{1 - r_{10} r_{12} p^2} \]

\[= r_{01} + (1 - r_{01}^2) r_{12} p^2 \frac{1}{1 - r_{10} r_{12} p^2} \]

\[= \frac{r_{01} + r_{01}^2 r_{12} p^2 + (1 - r_{01}^2) r_{12} p^2}{1 - r_{10} r_{12} p^2} \]

\[r_{\text{slab}} = \frac{r_{01} - r_{12} p^2}{1 + r_{01} r_{12} p^2} = \frac{r_{01} (1 - p^2)}{1 - r_{01}^2 p^2} \]

Using the identity

\[t_{01} t_{10} = 1 - r_{01}^2 \]

expanding over a common denominator

and if \(n_0 = n_2 \) then

\[r_{01} = -r_{12} \]
Kiessig Fringes

\[p^2 = e^{iQ_1 \Delta} \]

\[r_{slab} = \frac{r_{01} (1 - p^2)}{1 - r_{01}^2 p^2} \]

If we plot the reflectivity
\[R_{slab} = |r_{slab}|^2 \]

There are Kiessig fringes which arise from interference between reflections at the top and bottom of the slab. These have an oscillation frequency
\[2\pi/\Delta = 0.0092 \text{Å}^{-1} \]
Kiessig Fringes

\[p^2 = e^{iQ_1 \Delta} \]

\[r_{slab} = \frac{r_{01} (1 - p^2)}{1 - r_{01}^2 p^2} \]

If we plot the reflectivity

\[R_{slab} = |r_{slab}|^2 \]
Kiessig Fringes

\[p^2 = e^{iQ_1 \Delta} \]

\[r_{slab} = \frac{r_{01} (1 - p^2)}{1 - r_{01}^2 p^2} \]

If we plot the reflectivity

\[R_{slab} = |r_{slab}|^2 \]
Kiessig Fringes

\[p^2 = e^{iQ_1 \Delta} \]

\[r_{\text{slab}} = \frac{r_{01} (1 - p^2)}{1 - r_{01}^2 p^2} \]

If we plot the reflectivity

\[R_{\text{slab}} = |r_{\text{slab}}|^2 \]

There are Kiessig fringes which arise from interference between reflections at the top and bottom of the slab.
Kiessig Fringes

\[p^2 = e^{iQ_1 \Delta} \]

\[r_{slab} = \frac{r_{01} (1 - p^2)}{1 - r_{01}^2 p^2} \]

If we plot the reflectivity

\[R_{slab} = |r_{slab}|^2 \]

There are Kiessig fringes which arise from interference between reflections at the top and bottom of the slab. These have an oscillation frequency

\[2\pi / \Delta = 0.0092 \text{Å}^{-1} \]
Kinematical Reflection from a Thin Slab

If the slab is thin, we can make further simplifications.
Kinematical Reflection from a Thin Slab

If the slab is thin, we can make further simplifications

\[r_{slab} = \frac{r_{01} (1 - p^2)}{1 - r_{01}^2 p^2} \]
Kinematical Reflection from a Thin Slab

If the slab is thin, we can make further simplifications

\[r_{slab} = \frac{r_{01} (1 - p^2)}{1 - r_{01}^2 p^2} \]

\[|r_{01}| \ll 1 \quad \alpha > \alpha_c \]
Kinematical Reflection from a Thin Slab

If the slab is thin, we can make further simplifications

\[r_{slab} = \frac{r_{01} (1 - p^2)}{1 - r_{01}^2 p^2} \approx r_{01} (1 - p^2) \]

\[|r_{01}| \ll 1 \quad \alpha > \alpha_c \]
Kinematical Reflection from a Thin Slab

If the slab is thin, we can make further simplifications

\[r_{slab} = \frac{r_{01} (1 - p^2)}{1 - r_{01}^2 p^2} \]

\[\approx r_{01} (1 - p^2) \approx r_{01} \left(1 - e^{iQ\Delta}\right) \]

\[|r_{01}| \ll 1 \quad \alpha > \alpha_c \]
Kinematical Reflection from a Thin Slab

If the slab is thin, we can make further simplifications

\[r_{slab} = \frac{r_{01} (1 - p^2)}{1 - r_{01}^2 p^2} \]

\[\approx r_{01} (1 - p^2) \]

\[= r_{01} \left(1 - e^{iQ\Delta} \right) \]

\[|r_{01}| \ll 1 \quad \alpha > \alpha_c \]

\[q_1 \approx q_0 + i b_\mu / q_0 \]

Since \(Q\Delta \ll 1 \) for a thin slab

\[r_{thinslab} \approx -i \lambda \rho r_0 \Delta \sin \alpha \]
Kinematical Reflection from a Thin Slab

If the slab is thin, we can make further simplifications

\[r_{slab} = \frac{r_{01} (1 - p^2)}{1 - r_{01}^2 p^2} \]

\[\approx r_{01} (1 - p^2) \]

\[= r_{01} (1 - e^{iQ\Delta}) \]

\[|r_{01}| \ll 1 \quad \alpha > \alpha_c \]

\[q_1 \approx q_0 + ib_\mu / q_0 \]

\[b_\mu = (2k_\mu) / Q_c^2 \]
Kinematical Reflection from a Thin Slab

If the slab is thin, we can make further simplifications

\[r_{\text{slab}} = \frac{r_{01}(1 - p^2)}{1 - r_{01}^2 p^2} \]

\approx r_{01} (1 - p^2)

\approx r_{01} \left(1 - e^{iQ\Delta}\right)

| r_{01} | \ll 1 \quad \alpha > \alpha_c

q_1 \approx q_0 + ib_{\mu}/q_0

b_{\mu} = \frac{(2k_{\mu})}{Q_c^2} \sim \frac{Q_c}{Q_c^2} = 1/Q_c
Kinematical Reflection from a Thin Slab

If the slab is thin, we can make further simplifications

\[r_{slab} = \frac{r_{01} (1 - p^2)}{1 - r_{01}^2 p^2} \approx r_{01} (1 - p^2) \]

\[= r_{01} \left(1 - e^{iQ\Delta} \right) \]

\[|r_{01}| \ll 1 \quad \alpha > \alpha_c \]

\[q_1 \approx q_0 + ib_\mu/q_0 \]

\[b_\mu = (2k_\mu)/Q_c^2 \sim Q_c/Q_c^2 = 1/Q_c \]

\[r_{01} = \frac{q_0^2 - q_1^2}{(q_0 + q_1)^2} \]
Kinematical Reflection from a Thin Slab

If the slab is thin, we can make further simplifications

\[r_{slab} = \frac{r_{01} (1 - p^2)}{1 - r_{01}^2 p^2} \]

\[\approx r_{01} (1 - p^2) \]

\[= r_{01} \left(1 - e^{iQ\Delta}\right) \]

\[|r_{01}| \ll 1 \quad \alpha > \alpha_c \]

\[q_1 \approx q_0 + ib_\mu/q_0 \]

\[b_\mu = (2k_\mu)/Q_c^2 \sim Q_c/Q_c^2 = 1/Q_c \]

\[r_{01} = \frac{q_0^2 - q_1^2}{(q_0 + q_1)^2} \approx \frac{b_\mu^2}{q_0^2 (2q_0)^2} \]
Kinematical Reflection from a Thin Slab

If the slab is thin, we can make further simplifications

\[r_{slab} = \frac{r_{01} (1 - p^2)}{1 - r_{01} p^2} \]

\[\approx r_{01} (1 - p^2) \]

\[= r_{01} \left(1 - e^{iQ\Delta} \right) \]

\[|r_{01}| \ll 1 \quad \alpha > \alpha_c \]

\[q_1 \approx q_0 + i b_{\mu} / q_0 \]

\[b_{\mu} = (2k_{\mu}) / Q_c^2 \sim Q_c / Q_c^2 = 1 / Q_c \]

\[r_{01} = \frac{q_0^2 - q_1^2}{(q_0 + q_1)^2} \approx \frac{b_{\mu}^2}{q_0^2 (2q_0)^2} \]

\[\approx \frac{1 / Q_c^2}{4Q_0^4 / Q_c^4} = \frac{Q_c^2}{4Q_0^4} \]
If the slab is thin, we can make further simplifications

\[r_{\text{slab}} = \frac{r_{01} (1 - p^2)}{1 - r_{01}^2 p^2} \approx r_{01} (1 - p^2) \]

\[= r_{01} \left(1 - e^{iQ\Delta} \right) \]

\[r_{\text{slab}} \approx \left(\frac{Q_c}{2Q_0} \right)^2 \left(1 - e^{iQ\Delta} \right) \]

since \(Q \Delta \ll 1 \) for a thin slab

\[\left| r_{01} \right| \ll 1 \quad \alpha > \alpha_c \]

\[q_1 \approx q_0 + ib_{\mu}/q_0 \]

\[b_{\mu} = (2k_{\mu})/Q_c^2 \sim Q_c/Q_c^2 = 1/Q_c \]

\[r_{01} = \frac{q_0^2 - q_1^2}{(q_0 + q_1)^2} \approx \frac{b_{\mu}^2}{q_0^2 (2q_0)^2} \]

\[\approx \frac{1/Q_c^2}{4Q_0^4/Q_c^4} = \frac{Q_c^2}{4Q_0^4} \]
If the slab is thin, we can make further simplifications:

\[r_{\text{slab}} = \frac{r_{01} (1 - p^2)}{1 - r_{01}^2 p^2} \]

\[\approx r_{01} (1 - p^2) \]

\[\approx r_{01} \left(1 - e^{iQ\Delta} \right) \]

\[r_{\text{slab}} \approx \left(\frac{Q_c}{2Q_0} \right)^2 \left(1 - e^{iQ\Delta} \right) \]

\[|r_{01}| \ll 1 \quad \alpha > \alpha_c \]

\[q_1 \approx q_0 + ib_\mu / q_0 \]

\[b_\mu = (2k_\mu) / Q_c^2 \sim Q_c / Q_c^2 = 1 / Q_c \]

\[r_{01} = \frac{q_0^2 - q_1^2}{(q_0 + q_1)^2} \approx \frac{b_\mu^2}{q_0^2 (2q_0)^2} \]

\[\approx \frac{1 / Q_c^2}{4Q_0^4 / Q_c^4} = \frac{Q_c^2}{4Q_0^4} \]

Since \(Q\Delta \ll 1 \) for a thin slab.
If the slab is thin, we can make further simplifications:

\[r_{slab} = \frac{r_{01} (1 - p^2)}{1 - r_{01}^2 p^2} \]

\[\approx r_{01} (1 - p^2) \]

\[= r_{01} \left(1 - e^{iQ\Delta} \right) \]

\[r_{slab} \approx \left(\frac{Q_c}{2Q_0} \right)^2 \left(1 - e^{iQ\Delta} \right) \]

Since \(Q\Delta \ll 1 \) for a thin slab:

\[|r_{01}| \ll 1 \quad \alpha > \alpha_c \]

\[q_1 \approx q_0 + ib_\mu / q_0 \]

\[b_\mu = (2k_\mu) / Q_c^2 \sim Q_c / Q_c^2 = 1 / Q_c \]

\[r_{01} = \frac{q_0^2 - q_1^2}{(q_0 + q_1)^2} \approx \frac{b_\mu^2}{q_0^2 (2q_0)^2} \]

\[\approx \frac{1 / Q_c^2}{4Q_0^4 / Q_c^4} = \frac{Q_c^2}{4Q_0^4} \]

\[r_{thinslab} \approx -i \frac{\lambda \rho r_o \Delta}{\sin \alpha} \]
Multilayers in the Kinematical Regime

N repetitions of a bilayer of thickness Λ composed of two materials, A and B which have a density contrast ($\rho_A > \rho_B$).
N repetitions of a bilayer of thickness Λ composed of two materials, A and B which have a density contrast ($\rho_A > \rho_B$).

r_1 is the reflectivity of a single bilayer
Multilayers in the Kinematical Regime

N repetitions of a bilayer of thickness Λ composed of two materials, A and B which have a density contrast ($\rho_A > \rho_B$).

r_1 is the reflectivity of a single bilayer

β is the average absorption per bilayer
Multilayers in the Kinematical Regime

\[N \] repetitions of a bilayer of thickness \(\Lambda \)
composed of two materials, \(A \) and \(B \) which
have a density contrast \((\rho_A > \rho_B) \).

\(r_1 \) is the reflectivity of a single bilayer

\(\beta \) is the average absorption per bilayer

\(\zeta = Q\Lambda/2\pi \) is a dimensionless parameter
related to the phase shift of a single bilayer
N repetitions of a bilayer of thickness Λ composed of two materials, A and B which have a density contrast ($\rho_A > \rho_B$).

r_1 is the reflectivity of a single bilayer

β is the average absorption per bilayer

$\zeta = Q\Lambda/2\pi$ is a dimensionless parameter related to the phase shift of a single bilayer

From a stack of N bilayers

$$r_N(\zeta) = \sum_{\nu=0}^{N-1} r_1(\zeta) e^{i2\pi\zeta\nu} e^{-\beta\nu}$$
Multilayers in the Kinematical Regime

N repetitions of a bilayer of thickness Λ composed of two materials, A and B which have a density contrast ($\rho_A > \rho_B$).

r_1 is the reflectivity of a single bilayer

β is the average absorption per bilayer

$\zeta = Q\Lambda/2\pi$ is a dimensionless parameter related to the phase shift of a single bilayer

From a stack of N bilayers

$$r_N(\zeta) = \sum_{\nu=0}^{N-1} r_1(\zeta)e^{i2\pi\zeta\nu}e^{-\beta\nu} = r_1(\zeta)\frac{1 - e^{i2\pi\zeta N}e^{-\beta N}}{1 - e^{i2\pi\zeta}e^{-\beta}}$$
Reflectivity of a Bilayer

The reflectivity from a single bilayer can be evaluated using the reflectivity developed for a slab but replacing the density of the slab material with the difference in densities of the bilayer components.
The reflectivity from a single bilayer can be evaluated using the reflectivity developed for a slab but replacing the density of the slab material with the difference in densities of the bilayer components

$$\rho \rightarrow \rho_{AB} = \rho_A - \rho_B$$
Reflectivity of a Bilayer

The reflectivity from a single bilayer can be evaluated using the reflectivity developed for a slab but replacing the density of the slab material with the difference in densities of the bilayer components and assuming that material A is a fraction \(\Gamma \) of the bilayer thickness

\[
\rho \quad \rightarrow \quad \rho_{AB} = \rho_A - \rho_B
\]

\[
r_1(\zeta) = -i \frac{\lambda r_o \rho_{AB}}{\sin \theta} \int_{-\Lambda/2}^{+\Lambda/2} e^{i2\pi \zeta z/\Delta} d\zeta
\]
Reflectivity of a Bilayer

The reflectivity from a single bilayer can be evaluated using the reflectivity developed for a slab but replacing the density of the slab material with the difference in densities of the bilayer components and assuming that material A is a fraction Γ of the bilayer thickness

$$\rho \longrightarrow \rho_{AB} = \rho_A - \rho_B$$

$$r_1(\zeta) = -i \frac{\lambda r_o \rho_{AB}}{\sin \theta} \int_{-\Gamma \Lambda / 2}^{+\Gamma \Lambda / 2} e^{i 2 \pi \zeta z / \Delta} dz$$

$$= -i \frac{\lambda r_o \rho_{AB}}{\sin \theta} \frac{\Lambda}{2 \pi \zeta} \left[e^{i \pi \zeta \Gamma} - e^{-i \pi \zeta \Gamma} \right]$$
Reflectivity of a Bilayer

The reflectivity from a single bilayer can be evaluated using the reflectivity developed for a slab but replacing the density of the slab material with the difference in densities of the bilayer components and assuming that material A is a fraction Γ of the bilayer thickness

$$\rho \rightarrow \rho_{AB} = \rho_A - \rho_B$$

$$r_1(\zeta) = -i \frac{\lambda r_o \rho_{AB}}{\sin \theta} \int_{-\zeta \Lambda / 2}^{+\zeta \Lambda / 2} e^{i2\pi \zeta z / \Delta} \, dz$$

$$= -i \frac{\lambda r_o \rho_{AB}}{\sin \theta} \frac{\Lambda}{i2\pi \zeta} \left[e^{i\pi \zeta \Gamma} - e^{-i\pi \zeta \Gamma} \right]$$

$$e^{ix} - e^{-ix} = 2i \sin x$$

$$Q = 4\pi \sin \theta / \lambda = 2\pi \zeta / \Lambda$$
Reflectivity of a Bilayer

The reflectivity from a single bilayer can be evaluated using the reflectivity developed for a slab but replacing the density of the slab material with the difference in densities of the bilayer components and assuming that material A is a fraction Γ of the bilayer thickness.

\[\rho \quad \rightarrow \quad \rho_{AB} = \rho_A - \rho_B \]

\[
r_1(\zeta) = -i \frac{\lambda r_o \rho_{AB}}{\sin \theta} \int_{-\Gamma \Lambda / 2}^{+\Gamma \Lambda / 2} e^{i2\pi \zeta z/\Delta} dz
\]

\[
= -i \frac{\lambda r_o \rho_{AB}}{\sin \theta} \frac{\Lambda}{i2\pi \zeta} \left[e^{i\pi \zeta \Gamma} - e^{-i\pi \zeta \Gamma} \right]
\]

\[
e^{ix} - e^{-ix} = 2i \sin x
\]

\[
Q = 4\pi \sin \theta / \lambda = 2\pi \zeta / \Lambda
\]

\[
r_1 = -2ir_o \rho_{AB} \left(\frac{\Lambda^2 \Gamma}{\zeta} \right) \frac{\sin (\pi \Gamma \zeta)}{\pi \Gamma \zeta}
\]
Absorption Coefficient of a Bilayer

The total reflectivity for the multilayer is therefore:

\[r_N = -2i r_o \rho_{AB} \left(\frac{\Lambda^2 \Gamma}{\zeta} \right) \frac{\sin (\pi \Gamma \zeta)}{\pi \Gamma \zeta} \frac{1 - e^{i2\pi \zeta N} e^{-\beta N}}{1 - e^{i2\pi \zeta} e^{-\beta}} \]
Absorption Coefficient of a Bilayer

The total reflectivity for the multilayer is therefore:

\[r_N = -2i r_0 \rho_{AB} \left(\frac{\Lambda^2 \Gamma}{\zeta} \right) \frac{\sin (\pi \Gamma \zeta)}{\pi \Gamma \zeta} \frac{1 - e^{i 2 \pi \zeta N} e^{-\beta N}}{1 - e^{i 2 \pi \zeta} e^{-\beta}} \]

The incident x-ray has a path length \(\Lambda / \sin \theta \) in a bilayer, a fraction \(\Gamma \) through \(n_A \) and a fraction \((1 - \Gamma) \) through \(n_B \).
Absorption Coefficient of a Bilayer

The total reflectivity for the multilayer is therefore:

\[r_N = -2i r_0 \rho_{AB} \left(\frac{\Lambda^2 \Gamma}{\zeta} \right) \frac{\sin (\pi \Gamma \zeta)}{\pi \Gamma \zeta} \frac{1 - e^{i2\pi \zeta N} e^{-\beta N}}{1 - e^{i2\pi \zeta} e^{-\beta}} \]

The incident x-ray has a path length \(\Lambda / \sin \theta \) in a bilayer, a fraction \(\Gamma \) through \(n_A \) and a fraction \((1 - \Gamma) \) through \(n_B \). The amplitude absorption coefficient, \(\beta \) is
Absorption Coefficient of a Bilayer

The total reflectivity for the multilayer is therefore:

\[r_N = -2i \rho_{AB} \frac{\Lambda^2 \Gamma}{\zeta} \frac{\sin(\pi \Gamma \zeta)}{\pi \Gamma \zeta} \frac{1 - e^{i2\pi\zeta N} e^{-\beta N}}{1 - e^{i2\pi\zeta} e^{-\beta}} \]

The incident x-ray has a path length \(\Lambda/\sin \theta \) in a bilayer, a fraction \(\Gamma \) through \(n_A \) and a fraction \((1 - \Gamma) \) through \(n_B \). The amplitude absorption coefficient, \(\beta \) is

\[\beta = 2 \left[\frac{\mu_A}{2} \frac{\Gamma \Lambda}{\sin \theta} + \frac{\mu_B}{2} \frac{(1 - \Gamma) \Lambda}{\sin \theta} \right] \]
Absorption Coefficient of a Bilayer

The total reflectivity for the multilayer is therefore:

\[r_N = -2ir_0\rho_{AB} \left(\frac{\Lambda^2 \Gamma}{\zeta} \right) \frac{\sin (\pi \Gamma \zeta)}{\pi \Gamma \zeta} \frac{1 - e^{i2\pi \zeta N} e^{-\beta N}}{1 - e^{i2\pi \zeta} e^{-\beta}} \]

The incident x-ray has a path length \(\Lambda / \sin \theta \) in a bilayer, a fraction \(\Gamma \) through \(n_A \) and a fraction \((1 - \Gamma) \) through \(n_B \). The amplitude absorption coefficient, \(\beta \) is

\[\beta = 2 \left[\frac{\mu_A}{2} \frac{\Gamma \Lambda}{\sin \theta} + \frac{\mu_B}{2} \frac{(1 - \Gamma) \Lambda}{\sin \theta} \right] = \frac{\Lambda}{\sin \theta} \left[\mu_A \Gamma + \mu_B (1 - \Gamma) \right] \]
When $\zeta = Q \Lambda / 2 \pi$ is an integer, we have peaks.

As N becomes larger, these peaks would become more prominent.

This is effectively a diffraction grating for x-rays.

Multilayers are used commonly on laboratory sources as well as at synchrotrons as mirrors.
Reflectivity Calculation

- When $\zeta = Q\Lambda/2\pi$ is an integer, we have peaks

$$R_{\text{Multilayer}}$$

W/Si multilayer
10 bilayers on Si
$\Delta_{W}\Delta_{Si}=10\text{Å}/40\text{Å}$
Reflectivity Calculation

- When $\zeta = Q\Lambda/2\pi$ is an integer, we have peaks
- As N becomes larger, these peaks would become more prominent

$R_{\text{Multilayer}}$

W/Si multilayer
10 bilayers on Si
$\Delta W \Delta_{\text{Si}} = 10\text{Å}/40\text{Å}$
Reflectivity Calculation

- When $\zeta = Q\Lambda/2\pi$ is an integer, we have peaks.
- As N becomes larger, these peaks would become more prominent.
- This is effectively a diffraction grating for x-rays.

\[R_{\text{Multilayer}} \]

W/Si multilayer

10 bilayers on Si

$\Delta_W\Delta_{Si} = 10\text{Å}/40\text{Å}$
Reflectivity Calculation

When $\zeta = Q\Lambda/2\pi$ is an integer, we have peaks.

As N becomes larger, these peaks would become more prominent.

This is effectively a diffraction grating for x-rays.

Multilayers are used commonly on laboratory sources as well as at synchrotrons as mirrors.
Slab - Multilayer Comparison

\[\Delta = 68 \text{ Å} \]

W/Si multilayer
10 bilayers on Si
\[\Delta_{W} \Delta_{Si} = 10 \text{Å}/40 \text{Å} \]

C. Segre (IIT)